- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- + 频率分布表
- 确定极差、组数与组距
- 绘制频率分布表
- 补全频率分布表
- 根据频率分布表解决实际问题
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从存放号码分别为1,2,
,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:

则取到号码为奇数的频率是( )


则取到号码为奇数的频率是( )
A.0.53 | B.0.5 | C.0.47 | D.0.37 |
已知国家某5A级大型景区对每日游客数量拥挤等级规定如下表:
该景区对
月份的游客量作出如图的统计数据:

(Ⅰ)下面是根据统计数据得到的频率分布表,求
,
的值;
(Ⅱ)估计该景区
月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表):
(Ⅲ)某人选择在
月
日至
月
日这
天中任选
天到该景区游玩,求他这
天遇到的游客拥挤等级均为优的概率.
游客数量(百人) | ![]() | ![]() | ![]() | ![]() |
拥挤等级 | 优 | 良 | 拥挤 | 严重拥挤 |
该景区对


(Ⅰ)下面是根据统计数据得到的频率分布表,求


游客数量(百人) | ![]() | ![]() | ![]() | ![]() |
天数 | ![]() | 10 | 4 | 1 |
频率 | ![]() | ![]() | ![]() | ![]() |
(Ⅱ)估计该景区

(Ⅲ)某人选择在







有一个容量为66的样本,数据的分组及各组的频数如下:
[10.5,14.5) 2 [14.5,18.5) 4 [18.5,22.5) 9 [22.5,26.5) 18
[26.5,30.5) 11 [30.5,34.5) 12 [34.5,38.5) 8 [38.5,42.5) 2
根据样本的频率分布估计,数据落在[30.5,42.5)内的概率约是( )
[10.5,14.5) 2 [14.5,18.5) 4 [18.5,22.5) 9 [22.5,26.5) 18
[26.5,30.5) 11 [30.5,34.5) 12 [34.5,38.5) 8 [38.5,42.5) 2
根据样本的频率分布估计,数据落在[30.5,42.5)内的概率约是( )
A.![]() | B.![]() | C.![]() | D.![]() |
北京市某年11月1日—20日监测最高最低温度及差值数据如下:
(Ⅰ)完成下面的频率分布表及频率分布直方图,并写出频率分布直方图中
的值;


(Ⅱ)从日温差大于等于
的这些天中,随机选取2天.求这两天中至少有一天的温差在区间
内的概率.
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
最高温度(℃) | 20 | 16 | 14 | 20 | 20 | 20 | 18 | 15 | 12 | 11 | 12 | 12 | 13 | 9 | 8 | 6 | 13 | 11 | 10 | 14 |
最低温度(℃) | 5 | 4 | 2 | 4 | 9 | 6 | 9 | 3 | -1 | 0 | 5 | 1 | 4 | -1 | -4 | -2 | -1 | 0 | 1 | 3 |
差值(℃) | 15 | 12 | 12 | 16 | 11 | 14 | 9 | 12 | 13 | 11 | 7 | 11 | 9 | 10 | 12 | 8 | 14 | 11 | 9 | 11 |
(Ⅰ)完成下面的频率分布表及频率分布直方图,并写出频率分布直方图中



(Ⅱ)从日温差大于等于


我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
分组 | 频数 | 频率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | | |
[90,100] | 14 | 0.28 |
合计 | | 1.00 |
如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

将容量为100的样本数据分为8个组,如下表:
则第3组的频率为

组号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
频数 | 10 | 13 | x | 14 | 15 | 13 | 12 | 9 |
则第3组的频率为


A.![]() | B.![]() | C.![]() | D.![]() |
某校有150名学生参加了中学生环保知识竞赛,为了解成绩情况,现从中随机抽取50名学生的成绩进行统计(所有学生成绩均不低于60分).请你根据尚未完成的频率分布表,解答下列问题:
(1)写出M 、N 、p、q(直接写出结果即可),并作出频率分布直方图;
(2)若成绩在90分以上学生获得一等奖,试估计全校所有参赛学生获一等奖的人数;
(3)现从所有一等奖的学生中随机选择2名学生接受采访,已知一等奖获得者中只有2名女生,求恰有1名女生接受采访的概率.

(1)写出M 、N 、p、q(直接写出结果即可),并作出频率分布直方图;
(2)若成绩在90分以上学生获得一等奖,试估计全校所有参赛学生获一等奖的人数;
(3)现从所有一等奖的学生中随机选择2名学生接受采访,已知一等奖获得者中只有2名女生,求恰有1名女生接受采访的概率.
分组 | 频数 | 频率 | |
第1组 | [60,70) | M | 0.26 |
第2组 | [70,80) | 15 | p |
第3组 | [80,90) | 20 | 0.40 |
第4组 | [90,100] | N | q |
合计 | 50 | 1 |

某校高三数学备课组为了更好地制定复习计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:
(1)有以上统计数据完成如下2
2列联表,并判断是否有95%的把握认为期末数学成绩不低于90分与测试“过关”有关?说明你的理由;
(2)若高三年级学生在分数段[90,120)内的“过关”人数为60人,求高三年级的“过关”总人数是多少?
下面的临界值表供参考:
.
期末 分数段 | (0,60) | [60,75) | [75,90) | [90,105) | [105,120) | [120,150] |
人数 | 5 | 10 | 15 | 10 | 5 | 5 |
“过关” 人数 | 1 | 2 | 9 | 7 | 3 | 4 |
| | | | | | |
(1)有以上统计数据完成如下2

| 分数低于90分人数 | 分数不低于90分人数 | 总计 |
“过关”人数 | | | |
“不过关”人数 | | | |
总计 | | | |
(2)若高三年级学生在分数段[90,120)内的“过关”人数为60人,求高三年级的“过关”总人数是多少?
下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 |

为加快新能源汽车产业发展,推进节能减排,国家鼓励消费者购买新能源汽车.某校研究性学习小组从汽车市场上随机选取了M辆纯电动乘用车.根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
(1)求x,y,z,M的值;
(2)若用分层抽样的方法从这M辆纯电动乘用车中抽取一个容量为6的样本,从该样本中任选2辆,求选到的2辆车续驶里程为150≤R<250的概率.
分组 | 频数 | 频率 |
80≤R<150 | 10 | ![]() |
150≤R<250 | 30 | x |
R≥250 | y | z |
合计 | M | 1 |
(1)求x,y,z,M的值;
(2)若用分层抽样的方法从这M辆纯电动乘用车中抽取一个容量为6的样本,从该样本中任选2辆,求选到的2辆车续驶里程为150≤R<250的概率.
当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.程度2019年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到下边频率分布直方图,且规定计分规则如下表:

(1)请估计学生的跳绳个数的众数、中位数和平均数(保留整数);
(2)若从跳绳个数在
、
两组中按分层抽样的方法抽取9人参加正式测试,并从中任意选取2人,求两人得分之和不大于34分的概率.
每分钟跳绳个数 | ![]() | ![]() | ![]() | ![]() |
得分 | 17 | 18 | 19 | 20 |

(1)请估计学生的跳绳个数的众数、中位数和平均数(保留整数);
(2)若从跳绳个数在

