- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线中的直线过定点问题
- 抛物线中存在定点满足某条件问题
- 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分14分)
已知抛物线
的焦点为
,
为
上异于原点的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为
时,
为正三角形.
(Ⅰ)求
的方程;
(Ⅱ)若直线
,且
和
有且只有一个公共点
,
(ⅰ)证明直线
过定点,并求出定点坐标;
(ⅱ)
的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
已知抛物线














(Ⅰ)求

(Ⅱ)若直线




(ⅰ)证明直线

(ⅱ)

如图,过抛物线M:y=x2上一点A(点A不与原点O重合)作抛物线M的切线AB交y轴于点B,点C是抛物线M上异于点A的点,设G为△ABC的重心(三条中线的交点),直线CG交y轴于点

(Ⅰ)设A(x0,x02)(x0≠0),求直线AB的方程;
(Ⅱ)求
的值.
A. |

(Ⅰ)设A(x0,x02)(x0≠0),求直线AB的方程;
(Ⅱ)求

(题文)已知抛物线
的标准方程为
,
为抛物线
上一动点,
(
)为其对称轴上一点,直线
与抛物线
的另一个交点为
.当
为抛物线
的焦点且直线
与其对称轴垂直时,
的面积为18.
(1)求抛物线
的标准方程;
(2)记
,若
值与
点位置无关,则称此时的点
为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.













(1)求抛物线

(2)记




已知抛物线
上在第一象限内的点H(1,t)到焦点F的距离为2.
(1)若
,过点M,H的直线与该抛物线相交于另一点N,求
的值;
(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且
(其中O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与该抛物线交于G、D两点,求四边形AGBD面积的最小值.

(1)若


(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且

①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与该抛物线交于G、D两点,求四边形AGBD面积的最小值.
已知抛物线
:
.
(Ⅰ)
、
是抛物线
上不同于顶点
的两点,若以
为直径的圆经过抛物线的顶点,试证明直线
必过定点,并求出该定点的坐标;
(Ⅱ)在(Ⅰ)的条件下,抛物线在
、
处的切线相交于点
,求
面积的取值范围.


(Ⅰ)






(Ⅱ)在(Ⅰ)的条件下,抛物线在




设抛物线
的焦点为
,过
且斜率为
的直线
与椭圆交于
,
两点,
.
(1)求抛物线
的方程;
(2)若
关于
轴的对称点为
,求证:直线
恒过定点,并求出该点的坐标.








(1)求抛物线

(2)若




已知抛物线
的焦点为F,过F点的直线交抛物线于不同的两点A、B,且
,点A关于
轴的对称点为
,线段
的中垂线交
轴于点D,则D点的坐标为






A.(2,0) | B.(3,0) | C.(4,0) | D.(5,0) |
在平面直角坐标系中,抛物线C的顶点在原点O,过点
,其焦点F在x轴上.
求抛物线C的标准方程;
斜率为1且与点F的距离为
的直线
与x轴交于点M,且点M的横坐标大于1,求点M的坐标;
是否存在过点M的直线l,使l与C交于P、Q两点,且
若存在,求出直线l的方程;若不存在,说明理由.







已知倾斜角为
的直线经过抛物线
:
的焦点
,与抛物线
相交于
、
两点,且
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)过点
的两条直线
、
分别交抛物线
于点
、
和
、
,线段
和
的中点分别为
、
.如果直线
与
的倾斜角互余,求证:直线
经过一定点.








(Ⅰ)求抛物线

(Ⅱ)过点














