- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线中的参数范围问题
- 求抛物线上一点到定直线的最值
- 求抛物线上一点到定点的最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线E:
的焦点为F,过点F的直线l与E交于A,C两点
(1)求证:抛物线E在A、C两点处的切线互相垂直
(2)过点F作直线l的垂线与抛物线E交于B,D两点,求四边形ABCD的面积的最小值

(1)求证:抛物线E在A、C两点处的切线互相垂直
(2)过点F作直线l的垂线与抛物线E交于B,D两点,求四边形ABCD的面积的最小值
已知定点
,定直线
,动点
到点
的距离比点
到
的距离小1.
(1)求动点P的轨迹C的方程;
(2)过点
的直线
与(1)中轨迹C相交于两个不同的点M、N,若
,求直线
的斜率的取值范围.






(1)求动点P的轨迹C的方程;
(2)过点




已知抛物线E:x2=4y的焦点为F,P(a,0)为x轴上的点.
(1)过点P作直线l与E相切,求切线l的方程;
(2)如果存在过点F的直线l′与抛物线交于A,B两点,且直线PA与PB的倾斜角互补,求实数a的取值范围.
(1)过点P作直线l与E相切,求切线l的方程;
(2)如果存在过点F的直线l′与抛物线交于A,B两点,且直线PA与PB的倾斜角互补,求实数a的取值范围.
已知点P(x0,3)与点Q(x0,4)分别在椭圆
=1与抛物线y2=2px(p>0)上.
(1)求抛物线的方程;
(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线AB在y轴上的截距的取值范围.

(1)求抛物线的方程;
(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线AB在y轴上的截距的取值范围.
已知椭圆
的左、右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
的垂直平分线与
的交点的轨迹为曲线
,若
,且
是曲线
上不同的点,满足
,则
的取值范围为( )















A.![]() | B.![]() | C.![]() | D.![]() |












(1)求点

(2)当四边形


已知动圆过定点
,且在
轴上截得的弦长为4.
(1)求动圆圆心的轨迹
的方程;
(2)点
为轨迹
上任意一点,直线
为轨迹
上在点
处的切线,直线
交直线
于点
,过点
作
交轨迹
于点
,求
的面积的最小值.


(1)求动圆圆心的轨迹

(2)点













如图,已知三点
,
,
在抛物线
上,点
,
关于
轴对称(点
在第一象限), 直线
过抛物线的焦点
.

(Ⅰ)若
的重心为
,求直线
的方程;
(Ⅱ)设
,
的面积分别为
,求
的最小值.











(Ⅰ)若



(Ⅱ)设




在平面直角坐标系中,已知抛物线
的焦点
到双曲线
的渐近线的距离为
.
(1)求该抛物线的方程;
(2)设抛物线准线与
轴交于点
,过
作斜率为
的直线
与抛物线交于
,
两点,弦
的中点为
,
的中垂线交
轴于
,求点
横坐标的取值范围.




(1)求该抛物线的方程;
(2)设抛物线准线与












