- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线中的参数范围问题
- 求抛物线上一点到定直线的最值
- 求抛物线上一点到定点的最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线C:x2=8y的焦点为F,动点Q在C上,圆Q的半径为1,过点F的直线与圆Q切于点P,则
的最小值为________ ,此时圆Q的方程为________ .

已知抛物线
的焦点到准线的距离为
,直线
与抛物线
交于
两点,过这两点分别作抛物线
的切线,且这两条切线相交于点
.
(1)若
的坐标为
,求
的值;
(2)设线段
的中点为
,点
的坐标为
,过
的直线
与线段
为直径的圆相切,切点为
,且直线
与抛物线
交于
两点,求
的取值范围.







(1)若



(2)设线段












已知曲线
(1)若
,求经过点
且与曲线
只有一个公共点的直线方程:
(2)若
,请在直角坐标平面内找出纵坐标不同的两个点,此两点满足条件:无论
如何变化,这两个点都不在曲线
上;
(3)若曲线
与线段
有公共点,求
的最小值。

(1)若



(2)若



(3)若曲线



已知抛物线
,直线
、
(
),
与
恰有一个公共点
,
与
恰有一个公共点
,
与
交于点
.
(1)当
时,求点
到
准线的距离;
(2)当
与
不垂直时,求
的取值范围;
(3)设
是平面上一点,满足
且
,求
和
的夹角大小.













(1)当



(2)当



(3)设





已知直线
上有一动点
,过点
作直线
垂直于
轴,动点
在
上,且满足
(
为坐标原点),记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知定点
,
,
为曲线
上一点,直线
交曲线
于另一点
,且点
在线段
上,直线
交曲线
于另一点
,求
的内切圆半径
的取值范围.











(1)求曲线

(2)已知定点














如图,已知抛物线
.点A
,抛物线上的点P(x,y)
,过点B作直线AP的垂线,垂足为Q
(II)求
的最大值



(II)求
