- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- + 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
(
)的离心率为
,直线
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
的垂直平分线交
于点
.
(i)求点
的轨迹
的方程;
(ii)若
为点
的轨迹
的过点
的两条相互垂直的弦,求四边形
面积的最小值.






(1)求椭圆

(2)设椭圆











(i)求点


(ii)若





如图,在正方形
中,
为坐标原点,点
的坐标为
,点
的坐标为
,分别将线段
和
十等分,分点分别记为
和
,连接
,过
作
轴的垂线与
交于点
.

(1)求证:点
都在同一条抛物线上,并求抛物线
的方程;
(2)过点
作直线
与抛物线E交于不同的两点
, 若
与
的面积之比为4:1,求直线
的方程.
















(1)求证:点


(2)过点






已知抛物线
上任一点到焦点的距离比到
轴距离大1.
(1)求抛物线的方程;
(2)设
为抛物线上两点,且
不与
轴垂直,若线段
的垂直平分线恰过点
,求
的面积的最大值.


(1)求抛物线的方程;
(2)设






已知
,直线
,
为平面上的动点,过点
作
的垂线,垂足为点
,且
.
(1)求动点
的轨迹
的方程;
(2)过点
的直线交轨迹
于
两点,点O是直角坐标系的原点,求
面积的最小值,并求出当
的面积取到最小值时直线
的方程.







(1)求动点


(2)过点






已知顶点在坐标原点,焦点为





(1)求抛物线

(2)求

(3)当抛物线上一动点




抛物线
上有两个定点A、B分别在对称轴的上、下两侧,F为抛物线的焦点,并且
,
.
(1)求直线AB的方程.
(2)在抛物线AOB这段曲线上求一点P,使
的面积最大,并求这个最大面积.



(1)求直线AB的方程.
(2)在抛物线AOB这段曲线上求一点P,使
