- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- + 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得△ABC的重心G在x轴上.

(1)求p的值及抛物线的准线方程;
(2)求证:直线OA与直线BC的倾斜角互补;
(3)当xA∈(1,2)时,求△ABC面积的最大值.

(1)求p的值及抛物线的准线方程;
(2)求证:直线OA与直线BC的倾斜角互补;
(3)当xA∈(1,2)时,求△ABC面积的最大值.
已知中心在原点的椭圆
和抛物线
有相同的焦点
,椭圆
过点
,抛物线
的顶点为原点.

求椭圆
和抛物线
的方程;
设点P为抛物线
准线上的任意一点,过点P作抛物线
的两条切线PA,PB,其中A,B为切点.
设直线PA,PB的斜率分别为
,
,求证:
为定值;
若直线AB交椭圆
于C,D两点,
,
分别是
,
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
























已知抛物线
的焦点为F,直线l过焦点F与抛物线C分别交于A,B两点,且直线l不与x轴垂直,线段AB的垂直平分线与x轴交于点
,则
( )



A.![]() | B.![]() | C.![]() | D.![]() |
已知抛物线
的焦点为F,点
,点B在抛物线C上,且满足
(O为坐标原点).
(1)求抛物线C的方程;
(2)过焦点F任作两条相互垂直的直线l与
,直线l与抛物线C交于P,Q两点,直线
与抛物线C交于M,N两点,
的面积记为
,
的面积记为
,求证:
为定值.



(1)求抛物线C的方程;
(2)过焦点F任作两条相互垂直的直线l与







已知抛物线C:
经过点
,A,B是抛物线C上异于点O的不同的两点,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)若
,求
面积的最小值.


(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)若

