- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- + 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆
,点P是曲线
上的动点,过点P分别向圆N引切线
(
为切点)
(1)若
,求切线的方程;
(2)若切线
分别交y轴于点
,点P的横坐标大于2,求
的面积S的最小值.




(1)若

(2)若切线



已知抛物线
的焦点为
,过点
的直线交抛物线
于
和
两点.
(1)当
时,求直线
的方程;
(2)若过点
且垂直于直线
的直线
与抛物线
交于
两点,记
与
的面积分别为
,求
的最小值.






(1)当


(2)若过点









已知抛物线
:
,圆
:
,直线
:
与抛物线
相切于点
,且与圆
相切于点
.

(1)当
,
时,求直线
方程与抛物线
的方程;
(2)设
为抛物线
的焦点,
,
的面积分别为
,
,当
取得最大值时,求实数
的值.











(1)当




(2)设








已知抛物线
:
的焦点为
,点
为抛物线
上一点,
,且
(
为坐标原点).
(1)求抛物线
的方程;
(2)过点
的直线
与抛物线
交于
,
两点,求
面积的最小值.








(1)求抛物线

(2)过点






过抛物线
的焦点为F且斜率为k的直线l交曲线C于
、
两点,交圆
于M,N两点(A,M两点相邻).
(1)求证:
为定值;
(2)过A,B两点分别作曲线C的切线
,
,两切线交于点P,求
与
面积之积的最小值.




(1)求证:

(2)过A,B两点分别作曲线C的切线




已知抛物线
的焦点为F,点P为抛物线C上一点,
,O为坐标原点,
的面积为1.
(1)求抛物线C的方程;
(2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交C于A,B两点,记
,
的面积分别为
,求
的取值范围.



(1)求抛物线C的方程;
(2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交C于A,B两点,记




