- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- + 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为
,抛物线
与直线
的一个交点的横坐标为4.
(1)求抛物线
的方程;
(2)不过原点的直线
与
垂直,且与抛物线
交于不同的两点
,若线段
的中点为
,且
,求
的面积.




(1)求抛物线

(2)不过原点的直线








已知
是抛物线
的焦点,点
是抛物线
上一点,且
.
(1)求
,
的值;
(2)过点
作两条互相垂直的直线,与抛物线
的另一交点分别是
,
.
①若直线
的斜率为
,求
的方程;
②若
的面积为12,求
的斜率.





(1)求


(2)过点




①若直线



②若


已知点
,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且满足
.
(1)求动点
的轨迹
的方程;
(2)过点
作直线
与轨迹
交于
,
两点,
为直线
上一点,且满足
,若
的面积为
,求直线
的方程.








(1)求动点


(2)过点











已知抛物线C:
,其焦点到准线的距离为2,直线l与抛物线C交于A,B两点,过A,B分别作抛物线C的切线
,
交于点M
(Ⅰ)求抛物线C的方程
(Ⅱ)若
,求三角形
面积的最小值



(Ⅰ)求抛物线C的方程
(Ⅱ)若


已知点
到点
的距离比它到直线
距离小
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过点
作互相垂直的两条直线
,它们与(Ⅰ)中轨迹
分别交于点
及点
,且
分别是线段
的中点,求
面积的最小值.




(Ⅰ)求点


(Ⅱ)过点








已知曲线
的焦点是
,
、
是曲线
上不同两点,且存在实数
使得
,曲线
在点
、
处的两条切线相交于点
.
(1)求点
的轨迹方程;
(2)点
在
轴上,以
为直径的圆与
的另一交点恰好是
的中点,当
时,求四边形
的面积.











(1)求点

(2)点







如图,过抛物线
上的一点
作抛物线的切线,分别交x轴于点D交y轴于点B,点Q在抛物线上,点E,F分别在线段AQ,BQ上,且满足
,
,线段QD与
交于点P.

(1)当点P在抛物线C上,且
时,求直线
的方程;
(2)当
时,求
的值.






(1)当点P在抛物线C上,且


(2)当

