- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- + 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,设
为抛物线
上不同的四点,且点
关于
轴对称,
平行于该抛物线在点
处的切线
.
(1)求证:直线
与直线
的倾斜角互补;
(2)若
,且
的面积为16,求直线
的方程.







(1)求证:直线


(2)若




设
为抛物线
的焦点,过点
的直线
与抛物线
相交于
、
两点.
(1)若
,求此时直线
的方程;
(2)若与直线
垂直的直线
过点
,且与抛物线
相交于点
、
,设线段
、
的中点分别为
、
,如图,求证:直线
过定点;

(3)设抛物线
上的点
、
在其准线上的射影分别为
、
,若△
的面积是△
的面积的两倍,如图,求线段
中点的轨迹方程.







(1)若


(2)若与直线












(3)设抛物线









已知抛物线
的顶点在原点,焦点在
轴正半轴上,点
到其准线的距离等于
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)如图,过抛物线
的焦点的直线从左到右依次与抛物线
及圆
交于
、
、
、
四点,试证明
为定值.

(Ⅲ)过
、
分别作抛物
的切线
、
,且
、
交于点
,求
与
面积之和的最小值.




(Ⅰ)求抛物线

(Ⅱ)如图,过抛物线









(Ⅲ)过










已知抛物线
的焦点为F,直线
与
轴的交点为P,与C的交点为Q,且
过F的直线
与C相交于A、B两点.
(1)求C的方程;
(2)设点
且
的面积为
求直线
的方程;
(3)若线段AB的垂直平分线与C相交于M、N两点,且A、M、B、N四点在同一圆上,求直线
的方程.





(1)求C的方程;
(2)设点




(3)若线段AB的垂直平分线与C相交于M、N两点,且A、M、B、N四点在同一圆上,求直线

已知抛物线
,过点
的直线与抛物线交于
两点,又过
两点分别作抛物线的切线,两条切线交于
点。
(1)证明:直线
的斜率之积为定值;
(2)求
面积的最小值





(1)证明:直线

(2)求

过抛物线
上一点
作抛物线的切线
交
轴于
,
为焦点,以原点
为圆心的圆与直线
相切于点
.

(Ⅰ)当
变化时,求证:
为定值.
(Ⅱ)当
变化时,记三角形
的面积为
,三角形
的面积为
,求
的最小值.










(Ⅰ)当


(Ⅱ)当






如图,已知抛物线
,过抛物线上点B作切线
交y轴于点

(Ⅰ)求抛物线方程和切点
的坐标;
(Ⅱ)过点
作抛物线的割线,在第一象限内的交点记为
,
,设
为y轴上一点,满足
,
为
中点,求
的取值范围。




(Ⅰ)求抛物线方程和切点

(Ⅱ)过点







