- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知F是抛物线C1:y2=2px(p>0)的焦点,曲线C2是以F为圆心,
为半径的圆,直线4x-3y-2p=0与曲线C1,C2从上到下依次相交于点A,B,C,D,则
=( )


A.16 | B.4 |
C.![]() | D.![]() |
设抛物线
的焦点为F,已知直线
与抛物线C交于A,B两点(A,B两点分别在
轴的上、下方).
(1)求证:
;
(2)已知弦长
,试求:过A,B两点,且与直线
相切的圆D的方程.



(1)求证:

(2)已知弦长


已知抛物线
的顶点在原点,焦点在
轴正半轴上,点
到其准线的距离等于
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)如图,过抛物线
的焦点的直线从左到右依次与抛物线
及圆
交于
、
、
、
四点,试证明
为定值.

(Ⅲ)过
、
分别作抛物
的切线
、
,且
、
交于点
,求
与
面积之和的最小值.




(Ⅰ)求抛物线

(Ⅱ)如图,过抛物线









(Ⅲ)过










已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(1)求抛物线G的方程;
(2)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(3)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.
(1)求抛物线G的方程;
(2)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(3)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.
