- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- + 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为
,圆
与
轴的一个交点为
,圆
的圆心为
,
为等边三角形.
(1)求抛物线
的方程
(2)设圆
与抛物线
交于
、
两点,点
为抛物线
上介于
、
两点之间的一点,设抛物线
在点
处的切线与圆
交于
、
两点,在圆
上是否存在点
,使得直线
、
均为抛物线
的切线,若存在求
点坐标(用
、
表示);若不存在,请说明理由.








(1)求抛物线

(2)设圆





















已知抛物线
的焦点为
,直线
与
轴相交于点
,与曲线
相交于点
,且
(1)求抛物线
的方程;
(2)过抛物线
的焦点
的直线
交抛物线于
两点,过
分别作抛物线的切线,两切线交于点
,求证点
的纵坐标为定值.








(1)求抛物线

(2)过抛物线







在直角坐标系
中,抛物线
与直线
交于
,
两点.
(1)当
时,分别求抛物线
在点
和
处的切线方程;
(2)
轴上是否存在点
,使得当
变动时,总有
?说明理由.





(1)当




(2)




已知曲线
的焦点是
,
、
是曲线
上不同两点,且存在实数
使得
,曲线
在点
、
处的两条切线相交于点
.
(1)求点
的轨迹方程;
(2)点
在
轴上,以
为直径的圆与
的另一交点恰好是
的中点,当
时,求四边形
的面积.











(1)求点

(2)点







如图,过抛物线
上的一点
作抛物线的切线,分别交x轴于点D交y轴于点B,点Q在抛物线上,点E,F分别在线段AQ,BQ上,且满足
,
,线段QD与
交于点P.

(1)当点P在抛物线C上,且
时,求直线
的方程;
(2)当
时,求
的值.






(1)当点P在抛物线C上,且


(2)当


已知抛物线
的焦点
也是椭圆
的一个焦点,
与
的公共弦的长为
.
(1)求
的方程;
(2)过点
的直线
与
相交于
,
两点,与
相交于
,
两点,且
与
同向
(ⅰ)若
,求直线
的斜率
(ⅱ)设
在点
处的切线与
轴的交点为
,证明:直线
绕点
旋转时,
总是钝角三角形






(1)求

(2)过点










(ⅰ)若


(ⅱ)设







设抛物线
的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于M.N点.
(1)若
,
的面积为
,求抛物线方程;
(2)若
三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到直线n、m距离的比值.

(1)若



(2)若
A.M.F |
如图,
是抛物线
:
上横坐标大于零的一点,直线
过点
并与抛物线
在点
处的切线垂直,直线
与抛物线
相交于另一点
.
(1)当点
的横坐标为2时,求直线
的方程;
(2)若
,求过点
的圆的方程.










(1)当点


(2)若


