- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- + 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
,过点
的直线与抛物线相交于
,
两点,且
.
(1)求
的值;
(2)设动直线
:
与抛物线
相切于点
,点
是直线
上异于点
的一点,若以
为直径的圆恒过
轴上一定点
,求点
的横坐标
.






(1)求

(2)设动直线












在直角坐标系
中,曲线C:y=
与直线
(
>0)交与M,N两点,
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.




(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
已知曲线
的焦点是
,
、
是曲线
上不同两点,且存在实数
使得
,曲线
在点
、
处的两条切线相交于点
.
(1)求点
的轨迹方程;
(2)点
在
轴上,以
为直径的圆与
的另一交点恰好是
的中点,当
时,求四边形
的面积.











(1)求点

(2)点







已知点
在
上,以
为切点的
的切线的斜率为
,过
外一点
(不在
轴上)作
的切线
、
,点
、
为切点,作平行于
的切线
(切点为
),点
、
分别是与
、
的交点(如图):

(1)用
、
的纵坐标
、
表示直线
的斜率;
(2)若直线
与
的交点为
,证明
是
的中点;
(3)设三角形
面积为
,若将由过
外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做“切线三角形”,如
,再由
、
作“切线三角形”,并依这样的方法不断作切线三角形……,试利用“切线三角形”的面积和计算由抛物线及
所围成的阴影部分的面积





















(1)用





(2)若直线





(3)设三角形








(本小题满分13分)已知抛物线
的焦点为
,过点F作直线l交抛物线C于A,B两点.椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率
.

(Ⅰ)分别求抛物线C和椭圆E的方程;
(Ⅱ)经过A,B两点分别作抛物线C的切线
,切线
相交于点M.证明
;
(Ⅲ)椭圆E上是否存在一点
,经过点
作抛物线C的两条切线
(
为切点),使得直线
过点F?若存在,求出抛物线C与切线
所围成图形的面积;若不存在,试说明理由.




(Ⅰ)分别求抛物线C和椭圆E的方程;
(Ⅱ)经过A,B两点分别作抛物线C的切线



(Ⅲ)椭圆E上是否存在一点






已知椭圆
的方程为
,抛物线的方程为
,直线
过椭圆
的右焦点
且与抛物线相切.
(1)求椭圆
的方程;
(2)设
为抛物线上两个不同的点,
分别与抛物线相切于
,
相交于
点,弦
的中点为
,求证: 直线
与
轴垂直.






(1)求椭圆

(2)设









已知定点
,定直线
,动圆
经过点
且与直线
相切.
(I)求动圆圆心
的轨迹方程;
(II)设点
为曲线
上不同的两点,且
,过
两点分别作曲线
的两条切线,且二者相交于点
,求
面积的最小值.





(I)求动圆圆心

(II)设点







已知点
,点
为曲线C上的动点,过A作x轴的垂线,垂足为B,满足
.
(1)求曲线C的方程;
(2)直线l与曲线C交于两不同点P,Q(非原点),过P,Q两点分别作曲线C的切线,两切线的交点为M.设线段
的中点为N,若
,求直线l的斜率.



(1)求曲线C的方程;
(2)直线l与曲线C交于两不同点P,Q(非原点),过P,Q两点分别作曲线C的切线,两切线的交点为M.设线段

