刷题宝
  • 刷题首页
题库 高中数学

题干

如图:椭圆的顶点为,左右焦点分别为,,

(1)求椭圆的方程;
(2)过右焦点的直线与椭圆相交于两点,试探究在轴上是否存在定点,使得为定值?若存在求出点的坐标,若不存在请说明理由?
上一题 下一题 0.99难度 解答题 更新时间:2019-06-11 12:13:13

答案(点此获取答案解析)

同类题1

已知椭圆经过点,长轴长是短轴长的2倍.
(1)求椭圆的方程;
(2)设直线经过点且与椭圆相交于两点(异于点),记直线的斜率为,直线的斜率为,证明:为定值,并求出该定值.

同类题2

分别以双曲线的焦点为顶点,以双曲线的顶点为焦点作椭圆.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点的坐标为,在轴上是否存在定点,过点且斜率为的动直线交椭圆于两点,使以为直径的圆恒过点,若存在,求出的坐标;若不存在,说明理由.

同类题3

已知椭圆方程为:椭圆的右焦点为,离心率为,直线与椭圆相交于两点,且
(1)椭圆的方程
(2)求的面积;

同类题4

已知椭圆上任一点到,的距离之和为4.
(1)求椭圆的标准方程;
(2)已知点,设直线不经过点,与交于,两点,若直线的斜率与直线的斜率之和为,判断直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.
相关知识点
  • 平面解析几何
  • 平面解析几何
  • 圆锥曲线
  • 圆锥曲线
  • 椭圆
  • 椭圆
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)