刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆的离心率为,过椭圆的焦点且与长轴垂直的弦长为1.

(1)求椭圆的方程;
(2)设点为椭圆上位于第一象限内一动点,分别为椭圆的左顶点和下顶点,直线与轴交于点,直线与轴交于点,求证:四边形的面积为定值.
上一题 下一题 0.99难度 解答题 更新时间:2018-12-12 05:42:05

答案(点此获取答案解析)

同类题1

若,分别是椭圆:短轴上的两个顶点,点是椭圆上异于,的任意一点,若直线与直线的斜率之积为,则__________.

同类题2

求适合下列条件的圆锥曲线的标准方程.
(1)求与椭圆有公共焦点,且离心率的双曲线的方程.
(2)求顶点在原点,准线方程为的抛物线的方程.

同类题3

已知为抛物线的焦点,过点的直线与抛物线相交于不同的两点,抛物线在两点处的切线分别是,且相交于点,则的小值是___.

同类题4

.如图所示,点F是抛物线的焦点,点分别在抛物线及圆的实线部分上运动,且总是平行于x轴,则的周长的取值范围是(   )
A.B.C.D.

同类题5

已知椭圆过点,且离心率为.

(1)求椭圆的方程;
(2)过作斜率分别为的两条直线,分别交椭圆于点,且,证明:直线过定点.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 根据a、b、c求椭圆标准方程
  • 椭圆中的定值问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)