刷题首页
题库
高中数学
题干
已知椭圆
:
的一个焦点为
,离心率为
.
(1)求
的标准方程;
(2)若动点
为
外一点,且
到
的两条切线相互垂直,求
的轨迹
的方程;
(3)设
的另一个焦点为
,过
上一点
的切线与(2)所求轨迹
交于点
,
,求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-26 03:31:15
答案(点此获取答案解析)
同类题1
已知椭圆
离心率等于
,
、
是椭圆上的两点.
(1)求椭圆
的方程;
(2)
是椭圆上位于直线
两侧的动点.当
运动时,满足
,试问直线
的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由.
同类题2
若中心在坐标原点,对称轴为坐标轴的椭圆经过点
,离心率为
,则椭圆的标准方程为_____.
同类题3
椭圆两焦点
、
,
在椭圆上,则椭圆方程是______.
同类题4
已知抛物线
的方程为
,焦点为
,有一定点
,
在抛物线准线上的射影为
,
为抛物线上一动点.
(1)当
取最小值时,求
;
(2)如果一椭圆
以
、
为焦点,且过点
,求椭圆
的方程及右准线方程;
(3)设
是过点
且垂直于
轴的直线,是否存在直线
,使得
与抛物线
交于两个
不同的点
、
,且
恰被
平分?若存在,求出
的倾斜角
的范围;若不存在,请说明理由.
同类题5
已知椭圆
,过
上一点
的切线
的方程为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
且斜率不为
的直线交椭圆于
两点,试问
轴上是否存在点
,使得
?若存在,求出点
的坐标;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
轨迹问题——椭圆