- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知中心在坐标原点O的椭圆C经过点A(
),且点F(
,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在直线l与椭圆C交于B,D两点,满足
,且原点到直线l的距离为
?若存在,求出直线l的方程;若不存在,请说明理由.


(1)求椭圆C的方程;
(2)是否存在直线l与椭圆C交于B,D两点,满足


已知椭圆C:
=1(a>0,b>0)的离心率与双曲线
=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin
·x+cos
·y-l=0相切(
为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足
(O为坐标原点),当
时,求实数t取值范围.





(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足


已知动点
到定点
的距离与
到定直线
:
的距离比值是
.
(1)求点
的轨迹
的方程;
(2)曲线
与
轴交于
、
两点,直线
和
与直线
:
分别交于点
,
,试探究以
为直径的圆是否恒过定点,若是,求出所有定点的坐标;若否,请说明理由.






(1)求点


(2)曲线











设F1,F2分别为椭圆C
(1)若椭圆C上的点
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲

(1)若椭圆C上的点

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲

椭圆
的左顶点为
,
是椭圆上
上异于点
的任意一点,点
与点
关于点
对称.
(Ⅰ)求点
的坐标和椭圆
的离心率.
(Ⅱ)若椭圆
上是否存在点
,使得
,若存在,求出
横坐标的取值;若不存在,说明理由.








(Ⅰ)求点


(Ⅱ)若椭圆




已知椭圆
经过点
,且两焦点与短轴的一个端点的连线构成等腰直角三角形.
(
)求椭圆的方程.
(
)动直线
交椭圆
于
、
两点,试问:在坐标平面上是否存在一个定点
,使得以
为直径的圆恒过点
.若存在,求出点
的坐标;若不存在,请说明理由.


(

(









设椭圆C:
的左、右焦点分别为
、
,上顶点为A,在x轴负半轴上有一点B,满足
为线段
的中点,且AB⊥
。
(I)求椭圆C的离心率;
(II)若过A、B、
三点的圆与直线
:
相切,求椭圆C的方程;
(III)在(I)的条件下,过右焦点
作斜率为k的直线与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由。






(I)求椭圆C的离心率;
(II)若过A、B、



(III)在(I)的条件下,过右焦点

已知圆
,点
为平面内一动点,以线段
为直径的圆内切于圆
,设动点
的轨迹为曲线
.
(Ⅰ)求曲线
的方程;
(Ⅱ)
是曲线
上的动点,且直线
经过定点
,问在
轴上是否存在定点
,使得
,若存在,请求出定点
,若不存在,请说明理由.






(Ⅰ)求曲线

(Ⅱ)







