- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
过点
,且其中一个焦点的坐标为
.
(1)求椭圆
的方程;
(2)过椭圆
右焦点
的直线
与椭圆交于两点
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.



(1)求椭圆

(2)过椭圆








已知点
和直线
,
为曲线
上一点,
为点
到直线
的距离且满足
.
(1)求曲线
的轨迹方程;
(2)过点
作曲线
的两条动弦
,若直线
斜率之积为
,试问直线
是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.








(1)求曲线

(2)过点






已知椭圆
的中心在坐标原点,焦点在
轴上,且椭圆
的一个顶点与抛物线
的焦点重合,离心率为
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右焦点
且斜率存在的直线
交椭圆
于
两点,线段
的垂直平分线交
轴于
点,证明:
为定值.





(1)求椭圆

(2)过椭圆









在圆
内有一点
,
为圆
上一动点,线段
的垂直平分线与
的连线交于点
.
(Ⅰ)求点
的轨迹方程.
(Ⅱ)若动直线
与点
的轨迹交于
、
两点,且以
为直径的圆恒过坐标原点
.问是否存在一个定圆与动直线
总相切.若存在,求出该定圆的方程;若不存在,请说明理由.







(Ⅰ)求点

(Ⅱ)若动直线







已知椭圆
的上顶点为
,右焦点为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)若不过点
的动直线
与椭圆
交于
两点,且
,试探究:直线
是否过定点,若是,求该定点的坐标,若不是,请说明.





(1)求椭圆

(2)若不过点






圆
,动圆
过点
且与圆
相切,记圆心
的轨迹为
.
(1)求轨迹
的方程;
(2)若
分别是轨迹
与
轴的左、右交点,动点
满足
,连接
交轨迹
于点
,问:
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
,
的交点?若存在,求出点
的坐标;若不存在,说明理由.






(1)求轨迹

(2)若















已知椭圆
的标准方程为
,该椭圆经过点
,且离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆
长轴上一点
作两条互相垂直的弦
.若弦
的中点分别为
,证明:直线
恒过定点.




(1)求椭圆的标准方程;
(2)过椭圆






已知椭圆
:
的左右焦点分别为
、
,上顶点为B,O为坐标原点,且向量
与
的夹角为
.
求椭圆
的方程;
设
,点P是椭圆
上的动点,求
的最大值和最小值;
设不经过点B的直线l与椭圆
相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.















如图,已知圆
的半径为
,
,
是圆
上的一个动点,
的中垂线
交
于点
,以直线
为
轴,
的中垂线为
轴建立平面直角坐标系.

(Ⅰ)若点
的轨迹为曲线
,求曲线
的方程;
(Ⅱ)设点
为圆
上任意一点,过
作圆
的切线与曲线
交于
两点,证明:以
为直径的圆经过定点,并求出该定点的坐标.














(Ⅰ)若点



(Ⅱ)设点






