刷题首页
题库
高中数学
题干
如图,已知椭圆
的离心率是
,一个顶点是
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
是椭圆
上异于点
的任意两点,且
.试问:直线
是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-26 10:39:54
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,过焦点且垂直于长轴的直线被椭圆截得的弦长为
,过点
的直线与椭圆
相交于两点
(1)求椭圆
的方程;
(2)设
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
同类题2
已知椭圆方程
为:
椭圆的右焦点为
,离心率为
,直线
与椭圆
相交于
,
两点,且
(1)椭圆的方程;
(2)求
的面积的最大值.
(3)若椭圆的右顶点为
,上顶点为
,经过原点的直线与椭圆交于
,
两点,该直线与直线
交于点
,且点
,
均在第四象限.若
的面积是
面积的
倍,求该直线方程.
同类题3
已知椭圆
:
的离心率为
,过
的左焦点做
轴的垂线交椭圆于
、
两点,且
.
(1)求椭圆
的标准方程及长轴长;
(2)椭圆
的短轴的上下端点分别为
,
,点
,满足
,且
,若直线
,
分别与椭圆
交于
,
两点,且
面积是
面积的5倍,求
的值.
同类题4
已知椭圆
:
的左右焦点分别为
、
,上顶点为
B
,
O
为坐标原点,且向量
与
的夹角为
.
求椭圆
的方程;
设
,点
P
是椭圆
上的动点,求
的最大值和最小值;
设不经过点
B
的直线
l
与椭圆
相交于
M
、
N
两点,且直线
BM
、
BN
的斜率之和为1,证明:直线
l
过定点.
同类题5
已知椭圆
:
的右焦点为
,过点
的直线交椭圆
于
,
两点,若
的中点坐标为
,则椭圆
的方程为( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题