刷题首页
题库
高中数学
题干
如图,已知椭圆
的离心率是
,一个顶点是
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
是椭圆
上异于点
的任意两点,且
.试问:直线
是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-26 10:39:54
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
同类题2
已知
为椭圆
的右焦点,过椭圆长轴上一点
(不含端点)任意作一条直线
,交椭圆于
两点,且
(
为椭圆左焦点)周长的最大值为
.
(1)求椭圆的标准方程;
(2)过点
作与
轴不重合的直线
和该椭圆交于
两点,椭圆的左顶点为
,且
两直线分别与直线
交于
两点,若
的斜率分别为
,试问
是否为定值?若是,求出定值;若不是,请说明理由.
同类题3
已知椭圆
的左、右焦点分别为F
1
和F
2
,由4个点
构成一个高为
,面积为
的等腰梯形.
(1)求椭圆C的标准方程;
(2)过点F
1
的直线
和椭圆交于A,B两点,求
面积的最大值.
同类题4
已知椭圆
E
的对称轴为坐标轴,焦点
F
1
,
F
2
在
y
轴,离心率为
.
A
是椭圆
E
与
x
轴负半轴的交点,且|
AF
1
|+|
AF
2
|=4.
(1)求曲线
E
的方程;
(2)过
A
作两条直线
L
1
,
L
2
,且
L
1
,
L
2
与曲线
E
的异于
A
的交点分别为
B
,
C
.设
L
1
,
L
2
的斜率分别是
k
1
,
k
2
,若
k
1
k
2
=1,求证:由
B
、
C
确定的直线
l
经过定点.
同类题5
设F
1
、F
2
分别为椭圆C:
=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=
,△BF
1
F
2
为直角三角形.
(1)求椭圆C的方程;
(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题