刷题首页
题库
高中数学
题干
如图,椭圆
:
的离心率为
,设
,
分别为椭圆
的右顶点,下顶点,
的面积为1.
(1)求椭圆
的方程;
(2)已知不经过点
的直线
:
交椭圆于
,
两点,且
,求证:直线
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-26 08:42:33
答案(点此获取答案解析)
同类题1
已知椭圆
的左右焦点分别为
,
,抛物线
的顶点为
,且经过
,
,椭圆
的上顶点
满足
.
(1)求椭圆
的方程;
(2)设点
满足
,点
为抛物线
上一动点,抛物线
在
处的切线与椭圆交于
,
两点,求
面积的最大值.
同类题2
已知椭圆
:
的离心率为
,短轴长为2.
(1)求椭圆
的标准方程;
(2)过点
的直线
与椭圆
交于
、
两点,若以
为直径的圆恰好过坐标原点,求直线
的方程及
的大小.
同类题3
已知椭圆
过点
,其离心率
.
(1)求椭圆
的方程;
(2)若直线
不经过点
,且与椭圆
相交于
两点(
、
不重合),若直线
与直线
的斜率之积为
.
(ⅰ)证明:
过定点,并求出定点坐标;
(ⅱ)求
的面积的最大值.
同类题4
已知椭圆
上的一点到两个焦点的距离之和为4,离心率为
,点
为椭圆
的左顶点.
(1)求椭圆
的标准方程;
(2)设圆
,过点
作圆
的两条切线分别交椭圆
于点
和
,求证:直线
过定点.
同类题5
设椭圆C:
的左、右焦点分别为
、
,上顶点为A,在x轴负半轴上有一点B,满足
为线段
的中点,且AB⊥
。
(I)求椭圆C的离心率;
(II)若过A、B、
三点的圆与直线
:
相切,求椭圆C的方程;
(III)在(I)的条件下,过右焦点
作斜率为k的直线与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由。
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题