刷题首页
题库
高中数学
题干
已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求证:直线
恒过
轴上一定点.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-25 03:43:31
答案(点此获取答案解析)
同类题1
以椭圆
:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”.设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(1)求椭圆
及其“准圆”的方程;
(2)若椭圆
的“准圆”的一条弦
与椭圆
交于
、
两点,试证明:当
时,弦
的长为定值.
同类题2
椭圆
的焦点是
,
,且过点
.
(1)求椭圆
的标准方程;
(2)过左焦点
的直线
与椭圆
相交于
、
两点,
为坐标原点.问椭圆
上是否存在点
,使线段
和线段
相互平分?若存在,求出点
的坐标,若不存在,说明理由.
同类题3
如图
为椭圆C:
的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率
,
的面积为
.若点
在椭圆C上,则点
称为点M的一个“椭圆”,直线
与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.
(1)求椭圆C的标准方程;
(2)问是否存在过左焦点
的直线
,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
同类题4
已知椭圆
的左右焦点分别为
,
,点
在椭圆上,且
求椭圆的方程;
过
作与x轴不垂直的直线
与椭圆交于B,C两点,求
面积的最大值及
的方程.
同类题5
椭圆C:
+
=1(a>b>0)的短轴两端点为B
1
(0,﹣1)、B
2
(0,1),离心率e=
,点P是椭圆C上不在坐标轴上的任意一点,直线B
1
P和B
2
P分别与x轴相交于M,N两点,
(1)求椭圆
的方程和
的值;
(2)若点
坐标为(1,0),过
点的直线
与椭圆
相交于
两点,试求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题