- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆中的弦长
- + 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点为别为F1、F2,且过点
和
.

(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.




(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.
已知
是椭圆
:
的左焦点,O为坐标原点,
为椭圆上的点.
(1)求椭圆
的标准方程;
(2)若点
都在椭圆
上,且
中点
在线段
(不包括端点)上,求
面积的最大值,及此时直线
的方程.




(1)求椭圆

(2)若点







已知椭圆方程为
.
(1)设椭圆的左右焦点分别为
、
,点
在椭圆上运动,求
的值;
(2)设直线
和圆
相切,和椭圆交于
、
两点,
为原点,线段
、
分别和圆
交于
、
两点,设
、
的面积分别为
、
,求
的取值范围.

(1)设椭圆的左右焦点分别为




(2)设直线















已知
是椭圆
:
的右焦点,
是坐标原点.过
且与
轴垂直的直线交椭圆
于
、
两点,若
(Ⅰ)求
的值
(Ⅱ)若
是以
为圆心以
为半径的圆上动点,过点
且与该圆相切的直线
交椭圆
于
、
不同的两点,求
面积的最大值











(Ⅰ)求

(Ⅱ)若









已知动圆与圆
相切,且与圆
相内切,记圆心的轨迹为曲线.
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q为曲线C上的一个不在轴上的动点,O为坐标原点,过点
作OQ的平行线交曲线C于M,N两个不同的点, 求△QMN面积的最大值.


(Ⅰ)求曲线C的方程;
(Ⅱ)设Q为曲线C上的一个不在轴上的动点,O为坐标原点,过点

已知动点G(x,y)满足
(1)求动点G的轨迹C的方程;
(2)过点Q(1,1)作直线L与曲线
交于不同的两点
,且线段
中点恰好为Q.求
的面积;

(1)求动点G的轨迹C的方程;
(2)过点Q(1,1)作直线L与曲线



