刷题首页
题库
高中数学
题干
已知动圆与圆
相切,且与圆
相内切,记圆心的轨迹为曲线.
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q为曲线C上的一个不在轴上的动点,O为坐标原点,过点
作OQ的平行线交曲线C于M,N两个不同的点, 求△QMN面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-27 01:11:33
答案(点此获取答案解析)
同类题1
已知椭圆
的中心为原点
,
为
的左焦点,
为
上一点,满足
且
,则椭圆
的方程为( )
A.
B.
C.
D.
同类题2
已知
为坐标原点,点
,
,
,动点
满足
,点
为线段
的中点,抛物线
:
上点
的纵坐标为
,
.
(1)求动点
的轨迹曲线
的标准方程及抛物线
的标准方程;
(2)若抛物线
的准线上一点
满足
,试判断
是否为定值,若是,求这个定值;若不是,请说明理由.
同类题3
在平面直角坐标系中,已知两点
,
,动点
满足
,线段
的中垂线交线段
于
点.
(1)求
点的轨迹
的方程;
(2)过点
的直线
与轨迹
相交于
两点,设点
,直线
的斜率分别为
,问
是否为定值?并证明你的结论.
同类题4
已知定圆
,
,定点
,动圆
满足与
外切且与
内切,则
的最大值为( )
A.
B.
C.
D.
同类题5
已知椭圆
的两个焦点分别为
,离心率为
,过
的直线
与椭圆
交于
两点,且
的周长为8.
(1)求椭圆
的方程;
(2)直线
过点
,且与椭圆
交于
两点,求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的定义
利用椭圆定义求方程
椭圆中三角形(四边形)的面积