- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
是椭圆
上任一点,点
到直线
的距离为
,到点
的距离为
,且
.直线
与椭圆
交于不同两点
(
都在
轴上方),且
.
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.














(1)求椭圆

(2)当



(3)对于动直线




椭圆
的离心率为
,长轴端点与短轴端点间的距离为
.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
交于
两点,
为坐标原点,当
为直角时,求直线
的斜率.



(1)求椭圆

(2)过点







已知椭圆
经过点
,离心率
.
(1)求椭圆
的方程;
(2)设直线
经过点
且与
相交于
两点(异于点
),记直线
的斜率为
,直线
的斜率为
,证明:
为定值.



(1)求椭圆

(2)设直线










已知椭圆
过点
,直线
与椭圆
相交于
两点(异于点
).当直线
经过原点时,直线
斜率之积为
.
(1)求椭圆
的方程;
(2)若直线
斜率之积为
,求
的最小值.









(1)求椭圆

(2)若直线



在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)过点P(1,
).离心率为
.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点.
①若直线l过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线l的斜率为
,试探究OA2+ OB2是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由.



(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点.
①若直线l过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线l的斜率为

定值;若不是定值,请说明理由.
(本小题满分12分)
已知椭圆
的上、下、左、右四个顶点分别为
x轴正半轴上的某点
满足
.

(1)求椭圆的方程;
(2)设该椭圆的左、右焦点分别为
,点
在圆
上,且
在第一象限,过
作圆
的切线交椭圆于
,求证:△
的周长是定值.
已知椭圆





(1)求椭圆的方程;
(2)设该椭圆的左、右焦点分别为








如图所示,椭圆
:
(
)的离心率为
,左焦点为
,右焦点为
,短轴两个端点
、
,与
轴不垂直的直线
与椭圆
交于不同的两点
、
,记直线
、
的斜率分别为
、
,且
.

(1)求椭圆
的方程;
(2)求证直线
与
轴相交于定点,并求出定点坐标;
(3)当弦
的中点
落在
内(包括边界)时,求直线
的斜率的取值.



















(1)求椭圆

(2)求证直线


(3)当弦




在平面直角坐标系中,已知椭圆
的两个焦点分别是
,直线
与椭圆交于
两点.
(1)若
为椭圆短轴上的一个顶点,且
是直角三角形,求
的值;
(2)若
,且
是以
为直角顶点的直角三角形,求
与
满足的关系;
(3)若
,且
,求证:
的面积为定值.




(1)若



(2)若





(3)若



已知椭圆
:
过点
,且离心率
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)椭圆
长轴两端点分别为
,点
为椭圆上异于
的动点,直线
:
与直线
分别交于
两点,又点
,过
三点的圆是否过
轴上不同于点
的定点?若经过,求出定点坐标;若不存在,请说明理由.





(Ⅰ)求椭圆

(Ⅱ)椭圆












在平面直角坐标系
中,已知动点
到定点
的距离与到定直线
的距离之比为
.
(1)求动点
的轨迹
的方程;
(2)已知
为定直线
上一点.
①过点
作
的垂线交轨迹
于点
(
不在
轴上),求证:直线
与
的斜率之积是定值;
②若点
的坐标为
,过点
作动直线
交轨迹
于不同两点
,线段
上的点
满足
,求证:点
恒在一条定直线上.





(1)求动点


(2)已知


①过点








②若点









