刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆:过点,且离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆长轴两端点分别为,点为椭圆上异于的动点,直线:与直线分别交于两点,又点,过三点的圆是否过轴上不同于点的定点?若经过,求出定点坐标;若不存在,请说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2017-10-22 10:00:19

答案(点此获取答案解析)

同类题1

已知椭圆的右焦点为,过点且斜率为的直线与椭圆交于两点,线段的中点为为坐标原点.
(1)证明:点在轴的右侧;
(2)设线段的垂直平分线与轴、轴分别相交于点.若与的面积相等,求直线的斜率

同类题2

已知椭圆,为左、右焦点,直线过交椭圆于,两点.

(1)若垂直于轴时,求;
(2)当时,在轴上方时,求,的坐标;
(3)若直线交轴于,直线交轴于,是否存在直线,使,若存在,求出直线的方程;若不存在,请说明理由.

同类题3

求经过点,并且与圆相切于点的圆的方程.

同类题4

已知椭圆C的两个焦点为F1(-1,0),F2(1,0),且经过点E.
(1)求椭圆C的标准方程;
(2)过点F1的直线l与椭圆C交于A,B两点(点A位于x轴上方),若,且2≤λ<3,求直线l的斜率k的取值范围.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 直线与圆锥曲线的位置关系
  • 直线与椭圆的位置关系
  • 根据直线与椭圆的位置关系求参数或范围
  • 椭圆中的定值问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)