- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设椭圆的对称中心为坐标原点,其中一个顶点为
,右焦点
与点
的距离为2.
(1)求椭圆的方程;
(2)是否存在经过点
的直线
,使直线
与椭圆相交于不同的两点
,
满足
?若存在,求出直线
的方程;若不存在,请说明理由.



(1)求椭圆的方程;
(2)是否存在经过点







(本小题满分12分)如图,曲线
由上半椭圆
和部分抛物线
连接而成,
的公共点为
,其中
的离心率为
.

(Ⅰ)求
的值;
(Ⅱ)过点
的直线
与
分别交于
(均异于点
),若
,求直线
的方程.









(Ⅰ)求

(Ⅱ)过点







已知椭圆
经过点
,它的左焦点为
,直线
与椭圆
交于
,
两点,
的周长为
.
(1)求椭圆
的方程;
(2)若点
是直线
上的一个动点,过点
作椭圆
的两条切线
、
,
分别为切点,求证:直线
过定点,并求出此定点坐标.(注:经过椭圆
上一点
的椭圆的切线方程为
).









(1)求椭圆

(2)若点











已知椭圆
的一个顶点为
,半焦距为
,离心率
,又直线
交椭圆于
,
两点,且
为
中点.
(1)求椭圆
的标准方程;
(2)若
,求弦
的长;
(3)若点
恰好平分弦
,求实数
;
(4)若满足
,求实数
的取值范围并求
的值;
(5)设圆
与椭圆
相交于点
与点
,求
的最小值,并求此时圆
的方程;
(6)若直线
是圆
的切线,证明
的大小为定值.









(1)求椭圆

(2)若


(3)若点



(4)若满足



(5)设圆






(6)若直线



在平面直角坐标系
中,椭圆
:
经过点
,且点
为其一个焦点.
(1)求椭圆
的方程;
(2)设椭圆
与
轴的两个交点为
,
,不在
轴上的动点
在直线
上运动,直线
,
分别与椭圆
交于点
,
,证明:直线
通过一个定点,且
的周长为定值.





(1)求椭圆

(2)设椭圆














已知椭圆
(a>b>0)经过点
,且离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A(0,b),B(a,0),点P是椭圆C上位于第三象限的动点,直线AP、BP分别将x轴、y轴于点M、N,求证:|AN|•|BM|为定值.



(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A(0,b),B(a,0),点P是椭圆C上位于第三象限的动点,直线AP、BP分别将x轴、y轴于点M、N,求证:|AN|•|BM|为定值.
已知椭圆
的离心率为
,椭圆
截直线
所得的线段的长度为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,点
是椭圆
上的点,
是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.





(Ⅰ)求椭圆

(Ⅱ)设直线








已知A、B分别是椭圆
的左、右顶点,P为椭圆C的下顶点,F为其右焦点
点M是椭圆C上异于A、B的任一动点,过点A作直线
轴
以线段AF为直径的圆交直线AM于点A、N,连接FN交直线l于点
点G的坐标为
,且
,椭圆C的离心率为
.
求椭圆C的方程;
试问在x轴上是否存在一个定点T,使得直线MH必过该定点T?若存在,求出点T的坐标,若不存在,说明理由.










已知椭圆
的离心率
,且椭圆过点
.
(I)求椭圆
的标准方程;
(II)已知点
为椭圆
的下顶点,
为椭圆
上与
不重合的两点,若直线
与直线
的斜率之和为
,试判断是否存在定点
,使得直线
恒过点
,若存在,求出点
的坐标;若不存在,请说明理由.



(I)求椭圆

(II)已知点












在平面直角坐标系
中,点
,
,动点
满足
.
(1)求动点
的轨迹
的方程;
(2)若直线
与轨迹
有且仅有一个公共点
,且与直线
相交于点
,求证:以
为直径的圆过定点
.





(1)求动点


(2)若直线






