- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知两点
、
,动点
在
轴上的射影是
,且
.
(1)求动点
的轨迹方程;
(2)设直线
、
的两个斜率存在,分别记为
、
,若
,求点
的坐标;
(3)若经过点
的直线
与动点
的轨迹有两个交点
、
,当
时,求直线
的方程.






(1)求动点

(2)设直线






(3)若经过点







已知椭圆
的离心率为
,以椭圆长轴,短轴四个端点为顶点的四边形的面积为
.
(1)求椭圆C的方程;
(2)设点
,记椭圆的上下顶点分别为A和B,直线AM交椭圆于A,P两点,直线BM交椭圆于B,两点,记
和
的面积分别为
和
,当
时,求
的取值范围.



(1)求椭圆C的方程;
(2)设点







已知点
是椭圆
的一个焦点,点
在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
交于不同的
两点,且
(
为坐标原点),求直线
斜率的取值范围.




(Ⅰ)求椭圆

(Ⅱ)若直线






已知焦点在y轴上的椭圆E的中心是原点O,离心率等于
,以椭圆E的长轴和短轴为对角线的四边形的周长为
.直线
与
轴交于点P,与椭圆E相交于A,B两个点.




(I)求椭圆E的方程;
(II)若,求
的取值范围.
已知椭圆
的焦距为
,且
过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
分别是椭圆
的下顶点和上顶点,
是椭圆上异于
的任意一点,过点
作
轴于
为线段
的中点,直线
与直线
交于点
为线段
的中点,
为坐标原点,求证:




(Ⅰ)求椭圆

(Ⅱ)设














已知圆C:
和点
,P是圆上一点,线段BP的垂直平分线交CP于M点,则M点的轨迹方程为______ ;若直线l与M点的轨迹相交,且相交弦的中点为
,则直线l的方程是______ .


