- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设椭圆C:
的两个焦点是
和
(1)若椭圆C与圆
有公共点,求实数
的取值范围;
(2)若椭圆C上的点到焦点的最短距离为
求椭圆C的方程;
(3)对(2)中的椭图C,直线
与C交于不同的两点M、N,若线段MN的垂直平分线恒过点A(0,1),求实数
的值.



(1)若椭圆C与圆


(2)若椭圆C上的点到焦点的最短距离为

(3)对(2)中的椭图C,直线


已知椭圆
,双曲线
,若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个交点恰为一个正六边形的顶点,则
的值为____________.



给定椭圆
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
右焦点坐标为
,且过点
.
(1)求椭圆
的“伴椭圆”方程;
(2)在椭圆
的“伴椭圆”上取一点
,过该点作椭圆的两条切线
、
,证明:两线垂直;
(3)在双曲线
上找一点
作椭圆
的两条切线,分别交于切点
、
使得
,求满足条件的所有点
的坐标.







(1)求椭圆

(2)在椭圆




(3)在双曲线







已知椭圆
过点
,椭圆
左右焦点分别为
,上项点为
,
为等边三角形.定义椭圆
上的点
的“伴随点”为
.
(1)求椭圆
的方程;
(2)求
的最大值;
(3)直线
交椭圆
于
、
两点,若点
、
的“伴随点”分别是
、
,且以
为直径的圆经过坐标原点
.椭圆
的右顶点为
,试探究
的面积与
的面积的大小关系,并证明.









(1)求椭圆

(2)求

(3)直线














已知曲线
.
(1)若曲线C表示双曲线,求
的范围;
(2)若曲线C是焦点在
轴上的椭圆,求
的范围;
(3)设
,曲线C与
轴交点为A,B(A在B上方),
与曲线C交于不同两点M,N,
与BM交于G,求证:A,G,N三点共线.

(1)若曲线C表示双曲线,求

(2)若曲线C是焦点在


(3)设




已知在平面直角坐标系xOy中,椭圆C:
(a>b>0)离心率为
,其短轴长为2.
(1)求椭圆C的标准方程;
(2)如图,A为椭圆C的左顶点,P,Q为椭圆C上两动点,直线PO交AQ于E,直线QO交AP于D,直线OP与直线OQ的斜率分别为k1,k2,且k1k2=
,
(λ,μ为非零实数),求λ2+μ2的值.


(1)求椭圆C的标准方程;
(2)如图,A为椭圆C的左顶点,P,Q为椭圆C上两动点,直线PO交AQ于E,直线QO交AP于D,直线OP与直线OQ的斜率分别为k1,k2,且k1k2=



