刷题首页
题库
高中数学
题干
已知动圆
恒过点
,且与直线
相切.
(1)求圆心
的轨迹方程;
(2)若过点
的直线交轨迹
于
,
两点,直线
,
(
为坐标原点)分别交直线
于点
,
,证明:以
为直径的圆被
轴截得的弦长为定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-28 02:11:15
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,已知点
为直线
上一点,过点
作
的垂线与以
为直径的圆
相交于
,
两点.
(1)若
,求圆
的方程;
(2)求证:点
始终在某定圆上.
(3)是否存在一定点
(异于点
),使得
为常数?若存在,求出定点
的坐标;若不存在,说明理由.
同类题2
已知二次函数
的图像与坐标轴有三个不同的交点,经过这三个交点的圆记为
,则圆
经过定点的坐标为_______(其坐标与
无关)
同类题3
已知椭圆
:
(
)过点
,其左、右焦点分别为
,且
.
(1)求椭圆
的方程;
(2)若
是直线
上的两个动点,且
,则以
为直径的圆
是否过定点?请说明理由.
同类题4
已知椭圆
:
,设直线
:
是椭圆
的一条切线,两点
和
在切线
上.
(1)若
,
,
,
中恰有三点在椭圆
上,求椭圆
的方程;
(2)在(1)的条件下,证明:当
,
变化时,以
为直径的圆恒过定点,并求出定点坐标.
同类题5
在平面直角坐标系
中,设二次函数
的图象与两坐标轴有三个不同的交点. 经过这三个交点的圆记为
.
(I)求实数
的取值范围;
(II)求圆
的一般方程;
(III)圆
是否经过某个定点(其坐标与
无关)?若存在,请求出点的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆与方程
圆的方程
圆的一般方程
圆过定点问题
求平面轨迹方程