- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动圆M与直线
相切,且与圆
外切,记动圆M的圆心轨迹为曲线C.
(1)求曲线C的方程;
(2)若直线l与曲线C相交于A,B两点,且
(O为坐标原点),证明直线l经过定点H,并求出H点的坐标.


(1)求曲线C的方程;
(2)若直线l与曲线C相交于A,B两点,且

已知抛物线
:
过点
,
为其焦点,过
且不垂直于
轴的直线
交抛物线
于
,
两点,动点
满足
的垂心为原点
.
(1)求抛物线
的方程;
(2)求证:动点
在定直线
上,并求
的最小值.













(1)求抛物线

(2)求证:动点


