- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.

设抛物线
的方程为
,其中常数
,
是抛物线
的焦点.
(1)若直线
被抛物线
所截得的弦长为6,求
的值;
(2)设
是点
关于顶点
的对称点,
是抛物线
上的动点,求
的最大值;
(3)设
,
、
是两条互相垂直,且均经过点
的直线,
与抛物线
交于点
、
,
与抛物线
交于点
、
,若点
满足
,求点
的轨迹方程.





(1)若直线



(2)设






(3)设















已知抛物线
的方程
,焦点为
,已知点
在
上,且点
到点
的距离比它到
轴的距离大1.
(1)试求出抛物线
的方程;
(2)若抛物线
上存在两动点
(
在对称轴两侧),满足
(
为坐标原点),过点
作直线交
于
两点,若
,线段
上是否存在定点
,使得
恒成立?若存在,请求出
的坐标,若不存在,请说明理由.








(1)试求出抛物线

(2)若抛物线













在直角坐标系
中,动圆
与圆
外切,且圆
与直线
相切,记动圆圆心
的轨迹为曲线
.
(1)求曲线
的轨迹方程;
(2)直线
与抛物线交于两个不同的点
,若
,求实数
的值.







(1)求曲线

(2)直线



