- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- + 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,点
在椭圆
上,焦点为
,圆O的直径为
.

(1)求椭圆C及圆O的标准方程;
(2)设直线l与圆O相切于第一象限内的点P,且直线l与椭圆C交于
两点.记
的面积为
,证明:
.







(1)求椭圆C及圆O的标准方程;
(2)设直线l与圆O相切于第一象限内的点P,且直线l与椭圆C交于




设椭图
的左焦点为
,右焦点为
,上顶点为B,离心率为
,
是坐标原点,且
(1)求椭圆C的方程;
(2)已知过点
的直线
与椭圆C的两交点为M,N,若
,求直线
的方程.






(1)求椭圆C的方程;
(2)已知过点




已知椭圆
的离心率为
,过椭圆E的左焦点
且与x轴垂直的直线与椭圆E相交于的P,Q两点,O为坐标原点,
的面积为
.
(1)求椭圆E的方程;
(2)点M,N为椭圆E上不同两点,若
,求证:
的面积为定值.





(1)求椭圆E的方程;
(2)点M,N为椭圆E上不同两点,若


设椭圆
的离心率为
,直线
过椭圆的右焦点
,与椭圆交于点
;若
垂直于
轴,则
.
(1)求椭圆的方程;
(2)椭圆的左右顶点分别为
,直线
与直线
交于点
.求证:点
在定直线上.








(1)求椭圆的方程;
(2)椭圆的左右顶点分别为





设椭圆
的左、右焦点分别为
,过
的直线交椭圆于
两点,若椭圆C的离心率为
,
的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线
与椭圆C交于
两点,是否存在实数k使得以
为直径的圆恰好经过坐标原点?若存在,求出k的值;若不存在,请说明理由.







(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线



在平面直角坐标系
中,椭圆
的中心为原点,焦点
,
在
轴上,离心率为
.过
的直线
交
于
,
两点,且
的周长为
,那么椭圆
的方程为( )














A.![]() | B.![]() | C.![]() | D.![]() |