- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
椭圆有如下光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一个焦点,已知椭圆
长轴长为
,焦距为
,若一条光线从椭圆的左焦点出发,第一次回到该焦点所经过的路程为
,则椭圆
的离心率为______.





已知椭圆
的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于M、N两点,直线A1M的斜率为
.

(Ⅰ)求椭圆的离心率;
(Ⅱ)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为
,求椭圆方程.



(Ⅰ)求椭圆的离心率;
(Ⅱ)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为

设椭圆
的左、右焦点分别为
、
,上顶点为
,在
轴负半轴上有一点
,满足
为线段
的中点,且
.
(1)求椭圆
的离心率;
(2)若过
、
、
三点的圆与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点
作斜率为
的直线与椭圆
交于
、
两点,在
轴上是否存在点
使得以
、
为邻边的平行四边形是菱形?如果存在,求出
的取值范围,若不存在,请说明理由.









(1)求椭圆

(2)若过





(3)在(2)的条件下,过右焦点










如图,已知
是椭圆
的右焦点;圆
与
轴交于
两点,其中
是椭圆
的左焦点.

(1)求椭圆
的离心率;
(2)设圆
与
轴的正半轴的交点为
,点
是点
关于
轴的对称点,试判断直线
与圆
的位置关系;
(3)设直线
与圆
交于另一点
,若
的面积为
,求椭圆
的标准方程.








(1)求椭圆

(2)设圆








(3)设直线





