- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- + 椭圆的离心率
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆的一个焦点为
,对应的准线方程为
,且离心率
满足:
成等差数列

(1)求椭圆
方程;
(2)如图,抛物线
的一段与椭圆
的一段围成封闭图形,点
在
轴上,又
两点分别在抛物线及椭圆上,且
轴,求
的周长
的取值范围.





(1)求椭圆

(2)如图,抛物线








选修4—4:坐标系与参数方程
(1)若圆
在伸缩变换
的作用下变成一个焦点在
轴上,且离心率为
的椭圆,求
的值;
(2)在极坐标系中,已知点
,点
在曲线
上运动,求
两点间的距离的最小值.
(1)若圆





(2)在极坐标系中,已知点




设点
为椭圆
的右焦点,点
在椭圆
上,已知椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过右焦点
的直线
与椭圆相交于
,
两点,记
三条边所在直线的斜率的乘积为
,求
的最大值.






(Ⅰ)求椭圆

(Ⅱ)设过右焦点







已知椭圆
:
(
)的离心率为
,直线
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
的垂直平分线交
于点
.
(i)求点
的轨迹
的方程;
(ii)若
为点
的轨迹
的过点
的两条相互垂直的弦,求四边形
面积的最小值.






(1)求椭圆

(2)设椭圆











(i)求点


(ii)若





如图,设抛物线
的准线与
轴交于
,焦点为
;以
为焦点,离心率
的椭圆
与抛物线
在
轴上方的交点为
,延长
交抛物线于点
是抛物线
上一动点,且
在
与
之间运动.

(1)当
时,求椭圆
的方程;
(2)当
的边长恰好是三个连续的自然数时,求
面积的最大值.

















(1)当


(2)当

