刷题首页
题库
高中数学
题干
设点
为椭圆
的右焦点,点
在椭圆
上,已知椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过右焦点
的直线
与椭圆相交于
,
两点,记
三条边所在直线的斜率的乘积为
,求
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2015-04-29 06:51:20
答案(点此获取答案解析)
同类题1
设椭圆
的离心率是
,直线
被椭圆
C
截得的弦长为
.
(1)求椭圆
C
的方程;
(2)已知点
,斜率为
的直线
l
与椭圆
C
交于不同的两点
A
,
B
,当
的面积最大时,求直线
l
的方程.
同类题2
已知椭圆
的离心率为
,右焦点为
,斜率为1的直线
与椭圆
交于
两点,以
为底边作等腰三角形,顶点为
.
(1)求椭圆
的方程;
(2)求
的面积.
同类题3
已知椭圆
的离心率为
,其左、右焦点分别为
、
,过
且垂直于
x
轴的直线交椭圆
C
于点
D
,
.
(1)求椭圆
C
的方程;
(2)过
的直线
l
交椭圆
C
于
A
、
B
两点,若
,求
的面积.
同类题4
已知椭圆
:
的离心率为
,点
在椭圆上,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
、
、
为椭圆
上的三点,若四边形
为平行四边形,证明四边形
的面积
为定值,并求出该定值.
同类题5
已知椭圆
的离心率为
,
,
,
分别为椭圆
的上、下顶点,点
.
(1)求椭圆
的方程;
(2)若直线
,
与椭圆
的另一交点分别为
,
,证明:直线
过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
求抛物线上一点到定点的最值