刷题首页
题库
高中数学
题干
设点
为椭圆
的右焦点,点
在椭圆
上,已知椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过右焦点
的直线
与椭圆相交于
,
两点,记
三条边所在直线的斜率的乘积为
,求
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2015-04-29 06:51:20
答案(点此获取答案解析)
同类题1
设椭圆
,右顶点是
,离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆交于两点
(
不同于点
),若
,求证:直线
过定点,并求出定点坐标.
同类题2
已知椭圆
过点
,且离心率
.
(1)求椭圆
的方程;
(2)设直
交椭圆
于
两点,判断点
与以线段
为直径的圆的位置关系,并说明理由.
同类题3
已知椭圆
.
(Ⅰ)若椭圆
的离心率为
,求
的值;
(Ⅱ)若过点
任作一条直线
与椭圆
交于不同的两点
,
,在
轴上是否存在点
,使得
?若存在,求出点
的坐标;若不存在,请说明理由.
同类题4
已知椭圆
的离心率
,一个焦点在直线
上,若直线
与椭圆交于
,
两点,
为坐标原点,直线
的斜率为
,直线
的斜率为
.
(1)求该椭圆的方程.
(2)若
,试问
的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
同类题5
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,过左焦点
且垂直于
轴的直线交椭圆
于
两点,且
.
(Ⅰ)求
的方程;
(Ⅱ)若直线
是圆
上的点
处的切线,点
是直线
上任一点,过点
作椭圆
的切线
,切点分别为
,设切线的斜率都存在.求证:直线
过定点,并求出该定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
求抛物线上一点到定点的最值