- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- + 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
,在圆
:
上任取一点
,
的垂直平分线交
于点
.(如图).

(1)求点
的轨迹方程
;
(2)若过点
的动直线
与(1)中的轨迹
相交于
、
两点.问:平面内是否存在异于点
的定点
,使得
恒成立?试证明你的结论.








(1)求点


(2)若过点








点
在圆
上运动,
轴,
为垂足,点
在线段
上,满足
.
(1) 求点
的轨迹方程;
(2) 过点
作直线
与点
的轨迹相交于
、
两点,使点
被弦
平分,求直线
的方程.







(1) 求点

(2) 过点








已知椭圆的中心在原点,左焦点为
,右顶点为
.
(1)求该椭圆的标准方程;
(2)若
是椭圆上的动点,过
点向椭圆的长轴做垂线,垂足为
求线段
的中点
的轨迹方程;


(1)求该椭圆的标准方程;
(2)若





以下四个关于圆锥曲线的命题,
①双曲线
与椭圆
有相同的焦点;
②在平面内,设
为两个定点,
为动点,且
,其中常数
为正实数,则动点
的轨迹为椭圆;
③方程
的两根可以分别作为椭圆和双曲线的离心率;
④过双曲线
的右焦点
作直线
交双曲线于
两点,若
,则这样的直线
有且仅有3条.
其中真命题的个数为( )
①双曲线


②在平面内,设





③方程

④过双曲线






其中真命题的个数为( )
A.4 | B.3 | C.2 | D.1 |
设
点为圆
上的动点,点
在
轴上的投影为
,动点
满足
,动点
的轨迹为
.
(Ⅰ)求
的方程;
(Ⅱ)设
的左顶点为
,若直线
与曲线
交于两点
,
(
,
不是左右顶点),且满足
,求证:直线
恒过定点,并求出该定点的坐标.









(Ⅰ)求

(Ⅱ)设










已知曲线M上的动点
到定点
距离是它到定直线
距离的一半.
(1)求曲线M的方程;
(2)设过点
且倾斜角为
的直线与曲线M相交与A、B两点,在定直线l上是否存在点C,使得
,若存在,求出点C的坐标,若不存在,请说明理由.



(1)求曲线M的方程;
(2)设过点



已知定点
及直线
,动点
到直线
的距离为
,若
.
(1)求动点
的轨迹C方程;
(2)设
是
上位于
轴上方的两点,
坐标为
,且
,
的延长线与
轴交于点
,求直线
的方程.






(1)求动点

(2)设









