- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- + 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知复数
满足
,
在复平面上对应点的轨迹为
,
、
分别是曲线
的上、下顶点,
是曲线
上异于
、
的一点.
(1)求曲线
的方程;
(2)若
在第一象限,且
,求
的坐标;
(3)过点
作斜率为
的直线分别交曲线
于另一点
,交
轴于点
.求证:存在常数
,使得
恒成立,并求出
的值.











(1)求曲线

(2)若



(3)过点

















(1)求动圆圆心


(2)直线









已知复数
、
满足方程
和
,记
与
在平面上所对应的点所形成的轨迹为
和
.
(1)求曲线
和
的方程;
(2)过点
的直线交
于
、
不同两点,交
轴于点
,已知
,
,求
的值;
(3)直线
交
于
、
不同两点,
、
在
轴的射影分别为
、
,若点
满足
,证明:点
在
上.








(1)求曲线


(2)过点









(3)直线













已知两点
、
,动点
在
轴上的射影是
,且
.
(1)求动点
的轨迹方程;
(2)设直线
、
的两个斜率存在,分别记为
、
,若
,求点
的坐标;
(3)若经过点
的直线
与动点
的轨迹有两个交点
、
,当
时,求直线
的方程.






(1)求动点

(2)设直线






(3)若经过点







在平面直角坐标系中,已知点
,
,动点
满足直线
与
的斜率之积为
.记点
的轨迹为曲线
.
(1)求
的方程,并说明
是什么曲线;
(2)若
,
是曲线
上的动点,且直线
过点
,问在
轴上是否存在定点
,使得
?若存在,请求出定点
的坐标;若不存在,请说明理由.








(1)求


(2)若









在平面直角坐标系
中,
,
,且
满足
.记点
的轨迹为曲线
.
(1)求
的方程,并说明是什么曲线;
(2)若
,
是曲线
上的动点,且直线
过点
,问在
轴上是否存在定点
,使得
?若存在,请求出定点
的坐标;若不存在,请说明理由.







(1)求

(2)若









已知
,
是平面上的两个定点,动点
满足
.
(1)求动点
的轨迹方程;
(2)若直线
与(1)中的轨迹相交于不同的两点
,
为坐标原点,求
面积的最大值和此时直线
的方程.




(1)求动点

(2)若直线




