- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- + 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
(
)过点
,短轴一个端点到右焦点的距离为2.
(1)求椭圆C的方程;
(2)设过定点
的直线1与椭圆交于不同的两点A,B,若坐标原点O在以线段AB为直径的圆上,求直线l的斜率k.



(1)求椭圆C的方程;
(2)设过定点

已知椭圆
:
过点
,且以
,
为焦点,椭圆
的离心率为
.
(1)求实数
的值;
(2)过左焦点
的直线
与椭圆
相交于
、
两点,
为坐标原点,问椭圆
上是否存在点
,使线段
和线段
相互平分?若存在,求出点
的坐标,若不存在,说明理由。








(1)求实数

(2)过左焦点











已知椭圆
:
,该椭圆经过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)设
是圆
上任意一点,由
引椭圆
的两条切线
,
,当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.




(1)求椭圆

(2)设






已知椭圆

经过
和
两点.
(1)求椭圆
的标准方程及离心率.
(2)若直线
与椭圆
相交于
,
两点,在
轴上是否存在点
,使直线
与
的斜率之和为零?若存在,求出点
的坐标;若不存在,请说明理由.





(1)求椭圆

(2)若直线









已知椭圆
的右焦点为
,
是椭圆
上一点,
轴,
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
、
两点,线段
的中点为
,
为坐标原点,且
,求
面积的最大值.






(1)求椭圆

(2)若直线








