刷题首页
题库
高中数学
题干
已知椭圆
C
:
(
)过点
,短轴一个端点到右焦点的距离为2.
(1)求椭圆
C
的方程;
(2)设过定点
的直线1与椭圆交于不同的两点
A
,
B
,若坐标原点
O
在以线段
AB
为直径的圆上,求直线
l
的斜率
k
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-02 03:52:51
答案(点此获取答案解析)
同类题1
已知椭圆
的焦距为4,且过点
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
上一点,过点
作
轴的垂线,垂足为
,取点
,连接
,过点
作
的垂线交
轴于点
,点
是点
关于
轴的对称点,作直线
,问这样作出的直线
是否与椭圆
一定有唯一的公共点?并说明理由.
同类题2
根据下列条件,求椭圆的标准方程.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点
P
到两焦点的距离之和等于10;
(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点
.
同类题3
在平面直角坐标系
中,椭圆
:
的左、右焦点分别为
,两焦点与短轴的一个顶点构成等腰直角三角形,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)如图所示,过椭圆的左焦点作直线
(斜率存在且不为0)交椭圆
于
两点,过右焦点作直线
交椭圆
于
两点,且
,直线
交
轴于点
,动点
(异于
)在椭圆上运动.
①证明:
为常数;
②当
时,利用上述结论求
面积的取值范围.
同类题4
椭圆
的离心率是
,过点P(0,1)做斜率为k的直线l,椭圆E与直线l交于A,B两点,当直线l垂直于y轴时
.
(1)求椭圆E的方程;
(2)当k变化时,在x轴上是否存在点M(m,0),使得△AMB是以AB为底的等腰三角形,若存在求出m的取值范围,若不存在说明理由.
同类题5
椭圆
的离心率为
而且过点
,其长轴的左右端点分别为
,
,直线
交椭圆于
,
两点.
(1)求椭圆的标准方程;
(2)设直线
,
的斜率分别为
,
,若
,求
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据直线与椭圆的位置关系求参数或范围