- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- + 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某隧道的拱线设计为半个椭圆的形状,最大拱高
为6米(如图所示),路面设计是双向车道,车道总宽为
米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽
至少应是__________ 米.




已知椭圆
的左,右焦点分别为
,
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与椭圆
相交于
,
两点,使得
?若存在,求出直线的方程;若不存在,说明理由.





(1)求椭圆

(2)是否存在斜率为






已知椭圆
的左右顶点分别是
,
,点
在椭圆上,过该椭圆上任意一点P作
轴,垂足为Q,点C在
的延长线上,且
.

(1)求椭圆
的方程;
(2)求动点C的轨迹E的方程;
(3)设直线
(C点不同A、B)与直线
交于R,D为线段
的中点,证明:直线
与曲线E相切;








(1)求椭圆

(2)求动点C的轨迹E的方程;
(3)设直线




(1)求与双曲线
有共同的渐近线,且经过点
的双曲线的标准方程;
(2)焦点在坐标轴上,且经过A(-
,2)和B(
,1)两点的椭圆的标准方程


(2)焦点在坐标轴上,且经过A(-


已知椭圆
(
)的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于不同的两点
,
,试问在
轴上是否存在定点
使得直线
与直线
恰关于
轴对称?若存在,求出点
的坐标;若不存在,说明理由.




(1)求椭圆

(2)过点











在平面直角坐标系
中,已知椭圆
过点
,焦点为
,
,点
,
.
(1)求椭圆
的方程;
(2)设
是椭圆
上一点,且
点不在坐标轴上,已知直线
与
轴交于点
,直线
与
轴交于点
.求证:
为定值,并求出该定值.







(1)求椭圆

(2)设










已知点
在椭圆
:
上,
为坐标原点,直线
:
的斜率与直线
的斜率乘积为
(1)求椭圆
的方程;
(2)不经过点
的直线
:
(
且
)与椭圆
交于
,
两点,
关于原点的对称点为
(与点
不重合),直线
,
与
轴分别交于两点
,
,求证:
.








(1)求椭圆

(2)不经过点

















在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.

(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.





(1)求椭圆

(2)设点







①若直线




②设直线








