如图,为椭圆的左右焦点,是椭圆的两个顶点,,若点在椭圆上,则点称为点的一个“椭点”.直线与椭圆交于两点,两点的“椭点”分别为,已知以为直径的圆经过坐标原点.

(1)求椭圆的标准方程;
(2)试探讨的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
在平面直角坐标系中, 点是椭圆上的动点,分别是椭圆的左、右焦点,若的最大值为,最小值为.
(1)求的值;
(2)设为实数, 且,过点的动直线交椭圆,两点, 若为定值, 求的值.
当前题号:2 | 题型:解答题 | 难度:0.99
已知椭圆,右焦点,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆交于两点,为椭圆上异于的动点.
(1)若直线的斜率都存在,证明:;
(2)若,直线分别与直线相交于点,直线与椭圆相交
于点(异于点),求证:三点共线.
当前题号:3 | 题型:解答题 | 难度:0.99
已知椭圆经过点,离心率,其中分别表示标准正态分布的期望值与标准差.

(1)求椭圆C的方程;
(2)设直线与椭圆C交于A,B两点,点A关于x轴的对称点为
①试建立的面积关于m的函数关系;②莆田十中高三(1)班数学兴趣小组通过试验操作初步推断:“当m变化时,直线与x轴交于一个定点”.你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,
(1)求椭圆的方程;
(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
当前题号:6 | 题型:解答题 | 难度:0.99
已知椭圆的左、右焦点分别为F1、F2,短轴端点分别为A、B,且四边形F1AF2B是边长为2的正方形
(I)求椭圆的方程;
(II)若C、D分别是椭圆长轴的左、右端点,动点M满足,连结CM交椭圆于P,证明为定值(O为坐标原点);K^S*5U.C#O%
(III)在(II)的条件下,试问在x轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由
当前题号:7 | 题型:解答题 | 难度:0.99
已知分别为椭圆的上、下焦点,其中也是抛物线的焦点,点在第二象限的交点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)已知点(1,3)和圆,过点的动直线与圆相交于不同的两点,在线段取一点,满足:).
求证:点总在某定直线上.
当前题号:8 | 题型:解答题 | 难度:0.99
如图所示,椭圆M=1(a>b>0)的离心率为,右准线方程为x=4,过点P(0,4)作关于y轴对称的两条直线l1l2,且l1与椭圆交于不同两点ABl2与椭圆交于不同两点DC.

(1) 求椭圆M的方程;
(2) 证明:直线AC与直线BD交于点Q(0,1);
(3) 求线段AC长的取值范围.
当前题号:9 | 题型:解答题 | 难度:0.99
已知椭圆C(ab>0)的右焦点F(1,0),右顶点A,且|AF|=1.

(1)求椭圆C的标准方程.
(2)若动直线lykxm与椭圆C有且只有一个交点P,且与直线x=4交于点Q,问:是否存在一个定点M(t,0),使得?若存在,求出点M的坐标;若不存在,说明理由.
当前题号:10 | 题型:解答题 | 难度:0.99