刷题首页
题库
高中数学
题干
设椭圆
的右焦点为
,右顶点为
,已知
,其中
为坐标原点,
为椭圆的离心率.
(1)求椭圆
的方程;
(2)是否存在斜率为2的直线
,使得当直线
与椭圆
有两个不同交点
时,能在直线
上找到一点
,在椭圆
上找到一点
,满足
?若存在,求出直线
的方程;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-02-26 12:50:42
答案(点此获取答案解析)
同类题1
中心在原点,焦点在
x
轴上的一椭圆与一双曲线有共同的焦点
F
1
,
F
2
,且|
F
1
F
2
|=
,椭圆的长半轴与双曲线实半轴之差为4,椭圆与双曲线的离心率之比为3∶7.
(1)求这两曲线的方程;
(2)若
P
为这两曲线的一个交点,cos∠
F
1
PF
2
值.
同类题2
已知椭圆
的左右焦点分别为
F
1
,
F
2
,离心率为
,设过点
F
2
的直线
l
被椭圆
C
截得的线段为
MN
,当
l
⊥
x
轴时,|
MN
|=3.
(1)求椭圆
C
的标准方程;
(2)在
x
轴上是否存在一点
P
,使得当
l
变化时,总有
PM
与
PN
所在的直线关于
x
轴对称?若存在,请求出点
P
的坐标;若不存在,请说明理由.
同类题3
已知椭圆
:
过点
,且
到两焦点的距离之和为
.
(1)求椭圆
的方程;
(2)已知不经过原点
的直线
交椭圆
于
、
两点,线段
的中点在直线
上,求
的取值范围.
同类题4
椭圆
C
:
+
=1(
a
>
b
>0)的长轴长、短轴长和焦距成等差数列,若点
P
为椭圆
C
上的任意一点,且
P
在第一象限,
O
为坐标原点,
F
(3,0)为椭圆
C
的右焦点,则
•
的取值范围为( )
A.
B.
C.
D.
同类题5
已知椭圆
的离心率为
,点
是
E
上一点.
(1)求
E
的标准方程;
(2)若直线
l
的斜率为
k
,且经过点
,并与椭圆
E
交于不同的两点
P
,
Q
(均异于
A
),证明:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题