- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的右焦点为
,点
为椭圆
上的动点,且
的最大值和最小值分别为
和
.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于两个不同点
,
,与
轴交于
.若
,且
(
为坐标原点),求
的取值范围.







(1)求椭圆

(2)直线










已知椭圆C:
与圆M:
的一个公共点为
.
(1)求椭圆C的方程;
(2)过点M的直线l与椭圆C交于A、B两点,且A是线段MB的中点,求
的面积.



(1)求椭圆C的方程;
(2)过点M的直线l与椭圆C交于A、B两点,且A是线段MB的中点,求

已知椭圆的焦点在
轴上,中心在坐标原点.其在
轴上的两个顶点与两个焦点恰好是边长为2的正方形的顶点,则该椭圆的标准方程为________.


已知椭圆
的中心在原点,一个焦点为
,且
经过点
.
(1)求
的方程;
(2)设
与
轴的正半轴交于点
,直线
:
与
交于
、
两点(
不经过
点),且
.证明:直线
经过定点,并求出该定点的坐标.




(1)求

(2)设












已知离心率为
的椭圆
,与直线
交于
两点,记直线
的斜率为
,直线
的斜率为
.
(1)求椭圆方程;
(2)若
,则三角形
的面积是否为定值?若是,求出这个定值;若不是,请说明理由.








(1)求椭圆方程;
(2)若


设椭圆
:
的离心率为
,且以椭圆上顶点为圆心,半径为
的圆恰好经过椭圆
的两焦点.
(1)求椭圆
的标准方程;
(2)过定点
的直线交椭圆
于两点
、
,椭圆上的点
满足
,试求
的面积.





(1)求椭圆

(2)过定点







设
为坐标原点,动点
在椭圆
:
上,过点
作
轴的垂线,垂足为
,点
满足
.
(1)求点
的轨迹方程;
(2)设
,在x轴上是否存在一定点
,使
总成立?若存在,求出
点坐标;若不存在,说明理由.









(1)求点

(2)设



