刷题首页
题库
高中数学
题干
设椭圆
:
的离心率为
,且以椭圆上顶点为圆心,半径为
的圆恰好经过椭圆
的两焦点.
(1)求椭圆
的标准方程;
(2)过定点
的直线交椭圆
于两点
、
,椭圆上的点
满足
,试求
的面积.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-06 10:09:32
答案(点此获取答案解析)
同类题1
已知椭圆
离心率
,过左焦点
且垂直于
轴的直线交椭圆于点
,且
.
(1)求椭圆的方程;
(2)点
在椭圆上,求
的最大值.
同类题2
已知
、
是椭圆
(
)的左、右焦点,过
作
轴的垂线与
交于
、
两点,
与
轴交于点
,
,且
,
为坐标原点.
(1)求
的方程;
(2)设
为椭圆
上任一异于顶点的点,
、
为
的上、下顶点,直线
、
分别交
轴于点
、
.若直线
与过点
、
的圆切于点
.试问:
是否为定值?若是,求出该定值;若不是,请说明理由。
同类题3
已知椭圆
的一个焦点
,两个焦点与短轴的一个端点构成等边三角形.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过焦点
作
轴的垂线交椭圆上半部分于点
,过点
作椭圆
的弦
,设弦
所在的直线分别交
轴于
、
两点,若
为等腰三角形时,问直线
的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.
同类题4
已知点
在椭圆
:
(
)上,且点
到左焦点
的距离为3.
(1)求椭圆
的标准方程;
(2)设点
关于坐标原点
的对称点为
,又
、
两点在椭圆
上,且
,求凸四边形
面积的最大值.
同类题5
设椭圆
:
的左、右焦点分别为
,
,下顶点为
,椭圆
的离心率是
,
的面积是
.
(1)求椭圆
的标准方程.
(2)直线
与椭圆
交于
,
两点(异于
点),若直线
与直线
的斜率之和为1,证明:直线
恒过定点,并求出该定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围