刷题首页
题库
高中数学
题干
设椭圆
的离心率是
,A、B分别为椭圆的左顶点、上顶点,原点O到AB所在直线的距离为
.
(I)求椭圆C的方程;
(Ⅱ)已知直线
与椭圆相交于不同的两点M,N(均不是长轴的端点),
,垂足为H,且
,求证:直线
恒过定点.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-14 05:05:55
答案(点此获取答案解析)
同类题1
如图,曲线
由曲线
和曲线
组成,其中点
为曲线
所在圆锥曲线的焦点,点
为曲线
所在圆锥曲线的焦点.
(1)若
,求曲线
的方程;
(2)如图,作直线
平行于曲线
的渐近线,交曲线
于点
,求证:弦
的中点
必在曲线
的另一条渐近线上;
(3)对于(1)中的曲线
,若直线
过点
交曲线
于点
,求
的面积的最大值.
同类题2
已知椭圆
:
的右焦点
,且经过点
.
(1)求椭圆
的方程;
(2)点
是坐标原点,若直线
与椭圆
相切,过
作
,垂足为
,求证:
为定值.
同类题3
已知椭圆
:
(
)的左、右焦点分别为
,
,其离心率为
,短轴端点与焦点构成四边形的面积为
.
(1)求椭圆
的方程;
(2)若过点
的直线
与椭圆
交于不同的两点
、
,
为坐标原点,当
时,试求直线
的方程.
同类题4
已知椭圆
E
:
(
a
>
b
>0)的左,右焦点分别为
F
1
,
F
2
,且
F
1
,
F
2
与短轴的一个端点
Q
构成一个等腰直角三角形,点
P
(
)在椭圆
E
上,过点
F
2
作互相垂直且与
x
轴不重合的两直线
AB
,
CD
分别交椭圆
E
于
A
,
B
,
C
,
D
且
M
,
N
分别是弦
AB
,
CD
的中点
(1)求椭圆的方程
(2)求证:直线
MN
过定点
R
(
,0)
(3)求△
MNF
2
面积的最大值.
同类题5
已知椭圆
的右焦点
到直线
的距离为
,
在椭圆
上.
(1)求椭圆
的方程;
(2)若过
作两条互相垂直的直线
,
是
与椭圆
的两个交点,
是
与椭圆
的两个交点,
分别是线段
的中点试,判断直线
是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题