刷题首页
题库
高中数学
题干
如图,在平面直角坐标系
中,已知椭圆
的离心率为
,且右焦点到右准线
的距离为1.过
轴上一点
为常数,且
的直线与椭圆
交于
两点,与
交于点
,
是弦
的中点,直线
与
交于点
.
(1)求椭圆
的标准方程;
(2)试判断以
为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-18 05:38:14
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别为
、
,左顶点为
A
,离心率为
,点
B
是椭圆上的动点,
的面积的最大值为
.
(1)求椭圆
E
的方程;
(2)过点
的直线
l
与椭圆
E
相交于
C
、
D
两点,求
的最大值.
同类题2
如图,过抛物线M:
y
=
x
2
上一点
A
(点
A
不与原点
O
重合)作抛物线
M
的切线
AB
交
y
轴于点
B
,点
C
是抛物线M上异于点
A
的点,设
G
为△
ABC
的重心(三条中线的交点),直线
CG
交
y
轴于点
A.
(Ⅰ)设
A
(
x
0
,
x
0
2
)(
x
0
≠0),求直线
AB
的方程;
(Ⅱ)求
的值.
同类题3
把半椭圆
(
)与圆弧
(
)合成的曲线称作“曲圆”,其中
为
的右焦点,如图所示,
、
、
、
分别是“曲圆”与
轴、
轴的交点,已知
,过点
且倾斜角为
的直线交“曲圆”于
、
两点(
在
轴的上方).
(1)求半椭圆
和圆弧
的方程;
(2)当点
、
分别在第一、第三象限时,求△
的周长
的取值范围;
(3)若射线
绕点
顺时针旋转
交“曲圆”于点
,请用
表示
、
两点的坐标,并求△
的面积的最小值.
同类题4
设椭圆
,圆
为
.
(1)若椭圆
的长轴为4,且焦距与椭圆
的焦距相等,求椭圆
的标准方程;
(2)过圆
上任意一点
作其切线
,若
与椭圆
交于
两点,求证:
为定值(
为坐标原点);
(3)在(2)的条件下,求
面积的取值范围.
同类题5
已知椭圆
的左顶点为
,右焦点为
,过
作垂直于
轴的直线交该椭圆于
,
两点,直线
的斜率为
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若
的外接圆在
处的切线与椭圆交另一点于
,且
的面积为
,求椭圆的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题