刷题首页
题库
高中数学
题干
已知椭圆
的右焦点为
,
为椭圆的上顶点,
为坐标原点,且
是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
分别作直线
交椭圆于
两点,设两直线的斜率分别为
,且
,证明:直线
过定点
.
上一题
下一题
0.99难度 解答题 更新时间:2016-07-01 05:27:01
答案(点此获取答案解析)
同类题1
已知椭圆C:
的离心率为
,左焦点为
,过点
且斜率为
的直线
交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使
恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.
同类题2
平面直角坐标系
中,椭圆C:
的离心率是
,抛物线E:
的焦点F是C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线
与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线
与y轴交于点G,记
的面积为
,
的面积为
,求
的最大值及取得最大值时点P的坐标.
同类题3
设椭圆
的左、右焦点分别为
,
、
,
,点
在椭圆上,
为原点.
⑴若
,
,求椭圆的离心率;
⑵若椭圆的右顶点为
,短轴长为2,且满足
为椭圆的离心率).
①求椭圆的方程;
②设直线
:
与椭圆相交于
、
两点,若
的面积为1,求实数
的值.
同类题4
已知椭圆
的左焦点为
,右顶点为
,上顶点为
,
,
(
为坐标原点).
(1)求椭圆
的方程;
(2)定义:曲线
在点
处的切线方程为
.若抛物线
上存在点
(不与原点重合)处的切线交椭圆于
、
两点,线段
的中点为
.直线
与过点
且平行于
轴的直线的交点为
,证明:点
必在定直线上.
同类题5
已知椭圆
的离心率为
,
M
是椭圆
C
的上顶点,
,F2是椭圆
C
的焦点,
的周长是6.
(Ⅰ)求椭圆
C
的标准方程;
(Ⅱ)过动点
P
(1,t)作直线交椭圆
C
于
A
,
B
两点,且|PA|=|PB|,过
P
作直线
l
,使
l
与直线
AB
垂直,证明:直线
l
恒过定点,并求此定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题