- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C的离心率为
,长轴的左、右端点分别为
,
.

(1)求椭圆C的方程;
(2)设直线
与椭圆C交于P,Q两点,直线
,
交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.




(1)求椭圆C的方程;
(2)设直线



焦点在x轴上的椭圆C:
经过点
,椭圆C的离心率为
.
,
是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为
的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.





(1)求椭圆的标准方程;
(2)若点M为




如图,设椭圆
两顶点
,短轴长为4,焦距为2,过点
的直线
与椭圆交于
两点.设直线
与直线
交于点
.

(1)求椭圆的方程;
(2)求线段
中点
的轨迹方程;
(3)求证:点
的横坐标为定值.









(1)求椭圆的方程;
(2)求线段


(3)求证:点

如图,在平面直角坐标系
中,椭圆
:
上的动点到一个焦点的最远距离与最近距离分别是
与
,
的左顶点为
与
轴平行的直线与椭圆
交于
、
两点,过
、
两点且分别与直线
、
垂直的直线相交于点
.

(1)求椭圆
的标准方程;
(2)证明点
在一条定直线上运动,并求出该直线的方程;
(3)求
面积的最大值.

















(1)求椭圆

(2)证明点

(3)求

在直角坐标系
中,椭圆
:
,点
在椭圆
上,过点
作圆
的切线,其切线长为椭圆
的短轴长.
(Ⅰ)求椭圆
的方程;
(Ⅱ)直线
与椭圆
的另一个交点为
,点
在椭圆
上,且
,直线
与
轴交于
点.设直线
,
的斜率分别为
,
,求
的值.








(Ⅰ)求椭圆

(Ⅱ)直线














已知点
,直线
:
,平面上有一动点
,记点
到
的距离为
.若动点
满足:
.
(1)求点
的轨迹方程;
(2)过
的动直线
与点
的轨迹交于
,
两点,试问:在
轴上,是否存在定点
,使得
为常数?若存在,求出点
的坐标;若不存在,说明理由.









(1)求点

(2)过









已知椭圆
经过点
,其左焦点为
.过
点的直线
交椭圆于
、
两点,交
轴的正半轴于点
.

(1)求椭圆
的方程;
(2)过点
且与
垂直的直线交椭圆于
、
两点,若四边形
的面积为
,求直线
的方程;
(3)设
,
,求证:
为定值.










(1)求椭圆

(2)过点







(3)设



椭圆
的左、右焦点分别为
,
,过点
的直线
与椭圆交于点
,
,
的周长为
.
(1)求椭圆的标准方程;
(2)若
.①当
时,求直线
的方程;
②证明
是定值,并求出此定值.









(1)求椭圆的标准方程;
(2)若



②证明

已知椭圆
的右焦点为
,左,右顶点分别为
,离心率为
,且过点
.
(1)求
的方程;
(2)设过点
的直线
交
于
,
(异于
)两点,直线
的斜率分别为
.若
,求
的值.





(1)求

(2)设过点









