刷题首页
题库
高中数学
题干
椭圆
的左、右焦点分别为
,
,过点
的直线
与椭圆交于点
,
,
的周长为
.
(1)求椭圆的标准方程;
(2)若
.①当
时,求直线
的方程;
②证明
是定值,并求出此定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 09:19:19
答案(点此获取答案解析)
同类题1
椭圆的焦距为8,且椭圆上的点到两个焦点的距离之和为10,则该椭圆的标准方程是 ( )
A.
B.
或
C.
D.
或
同类题2
已知椭圆
(
)的左、右焦点分别为
、
,设点
,在
中,
,周长为
.
(1)求椭圆
的方程;
(2)设不经过点
的直线
与椭圆
相交于
、
两点,若直线
与
的斜率之和为
,求证:直线
过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为
,点
为椭圆
上的一个动点,试根据
面积
的不同取值范围,讨论
存在的个数,并说明理由.
同类题3
在平面直角坐标系
中,已知椭圆
的中心在原点
,焦点在
轴上短轴长为2,离心率为
,过左顶点
的直线
与椭圆交于另一点
.
(1)求椭圆
的方程;
(2)若
,求直线
的倾斜角.
同类题4
已知椭圆
的离心率为
,以椭圆
的任意三个顶点为顶点的三角形的面积是
.
(1)求椭圆
的方程;
(2)设
是椭圆
的右顶点,点
在
轴上.若椭圆
上存在点
,使得
,求点
横坐标的取值范围.
同类题5
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
的一个焦点为
,其短轴上一个端点到
的距离为
.
(1)求椭圆
的方程;
(2)过点
作椭圆
的“伴随圆”
的动弦
,过点
、
分别作“伴随圆”
的切线,设两切线交于点
,证明:点
的轨迹是直线,并写出该直线的方程;
(3)设点
是椭圆
的“伴随圆”
上的一个动点,过点
作椭圆
的切线
、
,试判断直线
、
是否垂直?并说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题