- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
(
),右焦点
,点
在椭圆上;
(1)求椭圆C的标准方程;
(2)是否存在过原点的直线l与椭圆C交于A、B两点,且
?若存在,请求出所有符合要求的直线;若不存在,请说明理由.





(1)求椭圆C的标准方程;
(2)是否存在过原点的直线l与椭圆C交于A、B两点,且

已知
,
是椭圆
:
短轴的两个端点,点
为坐标原点,点
是椭圆
上不同于
,
的动点,若直线
,
分别与直线
交于点
,
,则
面积的最小值为( )















A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆
的左、右焦点分别为
,
,直线
与椭圆
在第一象限内的交点是
,且
轴,
.
(1)求椭圆
的方程;
(2)是否存在斜率为
的直线
与以线段
为直径的圆相交于
,
两点,与椭圆
相交于
,
两点,且
?若存在,求出直线
的方程;若不存在,说明理由.








(1)求椭圆

(2)是否存在斜率为










定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
.
(1)若椭圆
,判断
与
是否相似?如果相似,求出
与
的相似比;如果不相似,请说明理由;
(2)写出与椭圆
相似且短半轴长为
的椭圆
的方程;若在椭圆
上存在两点
、
关于直线
对称,求实数
的取值范围.

(1)若椭圆





(2)写出与椭圆








长轴长为
的椭圆的中心在原点,其焦点
,
在
轴上,抛物线的顶点在原点
,对称轴为
轴,两曲线在第一象限内相交于点
, 且
,
的面积为3.

(1)求椭圆和抛物线的标准方程;
(2)过点
作直线
分别与抛物线和椭圆交于
,
,若
,求直线
的斜率
.










(1)求椭圆和抛物线的标准方程;
(2)过点







已知点
在椭圆
:
上,且点
到
的左、右焦点的距离之和为
.
(1)求
的方程;
(2)设
为坐标原点,若
的弦
的中点在线段
(不含端点
,
)上,求
的取值范围.






(1)求

(2)设







阿基米德是古希腊数学家,他利用“逼近法”算出椭圆面积等于圆周率、椭圆的长半轴长、短半轴长三者的乘积.据此得某椭圆面积为
,且两焦点恰好将长轴三等分,则此椭圆的标准方程可以为( )

A.![]() | B.![]() | C.![]() | D.![]() |