- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆定义及辨析
- 利用椭圆定义求方程
- + 椭圆上点到焦点的距离及最值
- 椭圆上的点到坐标轴上的点的距离及最值
- 椭圆中焦点三角形的周长问题
- 椭圆上点到焦点和定点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左焦点为
,点
是椭圆
的上顶点,直线
与椭圆
交于
,
两点.若点
到直线
的距离是1,且
不超过6,则椭圆
的离心率的取值范围是( )












A.![]() | B.![]() | C.![]() | D.![]() |
在平面直角坐标系xOy中,曲线C上的点
到点
的距离与它到直线
的距离之比为
,圆O的方程为
,曲线C与x轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中
,设直线AB,AC的斜率分别为
;
(1)求曲线C的方程,并证明
到点M的距离
;
(2)求
的值;
(3)记直线PQ,BC的斜率分别为
、
,是否存在常数
,使得
?若存在,求
的值,若不存在,说明理由.








(1)求曲线C的方程,并证明


(2)求

(3)记直线PQ,BC的斜率分别为





中国的嫦娥四号探测器,简称“四号星”,是世界首个在月球背面软着陆和巡视探测的航天器.2019年9月25日,中国科研人员利用嫦娥四号数据精确定位了嫦娥四号的着陆位置,并再现了嫦娥四号的落月过程,该成果由国际科学期刊《自然·通讯》在线发表.如图所示,

现假设“四号星”沿地月转移轨道飞向月球后,在月球附近一点
变轨进入以月球球心
为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在
点第二次变轨进入仍以
为一个焦点的椭圆轨道Ⅱ绕月飞行.若用
和
分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用
和
分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①
;②
;③
;④
.其中正确的式子的序号是( )

现假设“四号星”沿地月转移轨道飞向月球后,在月球附近一点












A.①③ | B.①④ | C.②③ | D.②④ |